Distributed Object Segmentation in Big Spatial Data

Hamid Hamraz, Ph.D Candidate
Department of Computer Science, University of Kentucky
hhamraz@cs.uky.edu www.cs.uky.edu/~hhamraz/

Problem Overview

- Big spatial data is delivered in the shape of several tiles and requires distributed computing.
- Object segmentation is not perfectly parallel because the objects may lie across the tiles.

Master-Slave Processing

- Master maintains a global picture
 - Assign the slaves to segment units
 - Joins the boundary data once ready and send them to slaves for re-segmentation
- Slaves segment units
 - Send the boundary data to the master
 - Re-segment joined boundary data as directed by the master

Related Work

- Multi-core processing
 - Limited memory and cores
 - Limits the size of problem
- Streaming
 - Manages memory
 - Does not help with the time
- Overlapping data units for distributed computing
 - Increases the problem size
 - How to merge overlapping result?

Proposed Approach

- Upon segmenting a data unit, identify boundary data
 - Edge
 - Corner

Segmenting Trees of Entire Robinson Forest

- Implemented using MPI
- Run on the UK HPC cluster
- Segmented nearly two million trees
 - 3 hours using 160 processors
 - 144 times faster than a single processor

Distribution of Tree Height

Generalization to 3D

- Upon segmenting a cube, boundary data are identified
 - Surface: shared among two cubes
 - Edge: shared among four cubes
 - Corner: shared among eight cubes

Implementation using MapReduce

- Map phase
 - Segment a unit and identify the boundary data
 - Assign a unique key to each of the boundary data, which must be the same across all units sharing the boundary
- Reduce Phase
 - Join all the boundary data pieces provided and re-segment
 - No master needed
 - Easier to implement once you know MapReduce
 - Not as efficient as MPI

Estimating tree numbers based on two million segmented trees