1. Background

- High power electromagnetic wave signal
- \(\Phi = r^2 \)
- It is well-known that adsorption of alkaline, or alkaline-earth metals/metal-oxide on transition metals lowers work function.

2. Computational Process

- Schrödinger Equation:
 \[
 \frac{-\hbar^2}{2m} \sum_{j=1}^{N} \nabla_j^2 \Psi(r_j) + \sum_{j<k} V(r_{jk}) + \sum_{j=1}^{N} \int [V(r_j, r_j)] \Psi = E \Psi
 \]
- Initial Guess \(n(r) \)
- Calculate Potential \(V_{\text{eff}}(r) = V(r) + \frac{e^2}{r_{\text{kin}}} + V_{\text{xc}}[n(r)] \)
- Solve Kohn-Sham (Single Electron) Equations:
 \[
 \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{eff}}(r) \right] \psi_i = \epsilon_i \psi_i
 \]
- Evaluate \(n(r) \) and \(E \)
 \[
 n(r) = \frac{1}{2m} \sum_{j} \psi_j^2 \psi_j^* \psi_j
 \]
- Output: Energy, Forces, Structures, Properties

3. Materials Discovery--Bulk

- The ground states structures of Os-W alloys
- Configurations of O/W, and possible positions for Ba tungsten (001)
- Configurations of Ba,Sc,O adsorptions on tungsten
- Stability is evaluated by surface energy
 \[
 \gamma_s = \frac{E([\text{Ba}_x \text{Sc}_y O_z W_s] - nE[\text{W}_s]) - x\mu_{\text{Ba}} + y\mu_{\text{Sc}} + z\mu_{O})}{2A}
 \]

4. Materials Discovery--Surface

- It is well-known that adsorption of alkaline, or alkaline-earth metals/metal-oxide on transition metals lowers work function.
- Configurations of O/W, and possible positions for Ba tungsten (001)
- Configurations of Ba,Sc,O adsorptions on tungsten
- Stability is evaluated by surface energy
 \[
 \gamma_s = \frac{E([\text{Ba}_x \text{Sc}_y O_z W_s] - nE[\text{W}_s]) - x\mu_{\text{Ba}} + y\mu_{\text{Sc}} + z\mu_{O})}{2A}
 \]

5. Materials Characterization

- Richardson Formula:
 \[
 J = A_0 e^{\frac{-\Phi}{kT}}
 \]

6. Materials and Device Design

- With \(\gamma_{(001)}, \gamma_{(110)}, \) and \(\gamma_{(112)} \) known, crystal shape can be calculated for every possible set of configurations.

7. Summary and Future Work

- Role of Sc: tune \(O_2 \) chemical potential
- Future work:
 - Further experiments to verify the computational work;
 - Fabricate improved cathodes by tuning

Legend format: [[(001), (112), (min(\(\mu_{Ba}, \mu_{O}, \mu_{Sc} \)))]

Ranges of \(\mu_{Ba}, \mu_{O}, \) and \(\mu_{Sc} \):

- Stable
- Have very low \(\Phi \):
- Yield right crystal shape;