State-of-the-art computational drug design, discovery, and development: Challenges and opportunities

Chang-Guo Zhan, Ph.D. *Director*, Molecular Modeling and Biopharmaceutical Center; Director, Chemoinformatics and Drug Design Core, Center for Pharmaceutical Research and Innovation; University Research Professor; Endowed College of Pharmacy Professor in Pharm. Sciences; Professor, Department of Pharmaceutical Sciences College of Pharmacy, University of Kentucky 789 South Limestone, Lexington, KY 40516 E-mail: zhan@uky.edu

UK CCS Seminar, March 19, 2024

Contents

- Challenges and opportunities for a computational drug designer in discovery and development
- Overview of our projects in drug discovery and development
- An example of virtual screening for drug repurposing
- Concluding remarks

Overview

Viagra" 🔿

25 mg*

FDA approval

(2-3 years)

Drug discovery and development process Time and money

10,000 - 10,000,000 compounds are often screened to find a single drug

Drug discovery and development process

10/4/2020

Cost of drug development - Wikipedia

Pharmaceutical company	Number of drugs approved	Average R&D spending per drug (in \$ Millions)	Total R&D spending from 1997-2011 (in \$ Millions)
AstraZeneca	5	\$11,790.93	\$58,955
GlaxoSmithKline	10	\$8,170.81	\$81,708
Sanofi	8	\$7,909.26	\$63,274
Roche Holding	11	\$7,803.77	\$85,841
Pfizer	14	\$7,727.03	\$108,178
Johnson & Johnson	15	\$5,885.65	\$88,285
Eli Lilly & Co.	11	\$4,577.04	\$50,347
Abbott Laboratories	8	\$4,496.21	\$35,970
Merck & Co Inc.	16	\$4,209.99	\$67,360
Bristol-Meyers Squibb Co.	11	\$4,152.26	\$45,675
Novartis	21	\$3,983.13	\$83,646
Amgen Inc.	9	\$3,692.14	\$33,229

Severin Schwan, the CEO of the Swiss company Roche, reported that Roche's research and development costs amounted to 12.3 billion in $2018^{[7]}$, a quarter of the entire National Institutes of Health budget.

Challenges and opportunities for a computational drug designer in discovery and development

- Perception of "drug design": Design of drug candidates
- ◆ Definition of a drug candidate? Not just merely an active and selective compound ("hit" → "lead" → "drug candidate" → "drug").
- Necessity of extensive *in vitro* and *in vivo* tests and formulation development – very time-consuming.
- What is your expectation? Publication or drug product?
- Who still want to do the real "drug design"? Think about how history will remember you.

Take-home message: Drug discovery is much more than identification of an active compound.

Integrated computational & experimental Approach

Take-home message: Computational modeling can be valuable in all stages of modern drug discovery and development process.

Evolution of Rational Drug Design

Ongoing Research Efforts in My Lab

Ultimate goal of our current research:

To discover and develop effective first-in-class therapeutic agents.

> Type I Projects: Development of novel computational methodologies

Summary of computational methods for a large biological/material system

- Scaling multi-scale approach:
 - Quantum Mechanics (QM)

Quantum Mechanics

P. A. M. Dirac

'... all the mathematics to solve the whole of chemistry is known, but the equations are too difficult to solve ...'

Erwin Schrödinger

Dirac Equation $i\hbar\gamma^{\mu}\partial_{\mu}\psi(x) - mc\psi(x) = 0$ To obtain relativistic wavefunction (accounting for relativistic effects)

Time-dependent Schrödinger Equation $\hat{H}|\psi_n(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi_n(t)\rangle$ Neglect relativistic effects

Practical QM Computations for Molecules

Schrödinger's equation for electronic systems

 $H^{el}\psi^{el} = E^{el}\psi^{el}$

Wavefunction Methods

John Pople (Gaussian program)

Walter Kohn (DFT)

1998 Nobel Prize in Chemistry (for development of computational methods to solve the **Schrödinger** equation for electronic system)

Martin Karplus

Michael Levitt

2013 Nobel Prize in Chemistry (for development of computational methods in studying biological systems)

Ongoing Research Efforts in My Lab

Ultimate goal of our current research:

To discover and develop effective first-in-class therapeutic agents.

> Type I Projects: Development of novel computational methodologies

Summary of computational methods for a large biological/material system

- Scaling multi-scale approach:
 - Quantum Mechanics (QM)
 - all-atom force field (MM)
 - coarse-grained (CG)
 - (further larger scale)?
- > Computational level for each scale, *e.g.* QM results are affected by
 - Electron correlation level
 - basis set
 - relativistic effects
 - solvent/environmental effects
- > Dynamics of biological systems
 - Time step and total simulation time
- > Al as a plus to expand the computational approach
 - Al relies on large data set available.

Ongoing Research Efforts in My Lab

Ultimate goal of our current research: To discover and develop effective first-in-class therapeutic agents.

- Type I Projects: Development of novel computational methodologies e.g. Development of first-principles electronic structure approach (NSF CHE-1111761); Development of novel AI approach to molecular design (NSF CNSF DMS-2245903 with Dr. Duc Nguyen)
- Type II Projects: Understanding molecular mechanisms of diseases to identify/validate novel drug targets (*e.g.* NIH R01 DA057866, NIH 2R01 DA035714, NIH P01 NS097197, and NIH P20 GM130456)
- Type III Projects: Design, discovery and development of small-molecule drugs (sponsored by NIH, DoD, and/or pharmaceutical companies) e.g. Topic for presentation today: DoD W81XWH2211000, NIH U01 HL152392 and KYNETIC Grant.
- Type IV Projects: Design, discovery and development of protein/peptide drugs (e.g. NIH U01 DA051079, NIH UG3/UH3 NS134920, NIH R01 DA056646, NIH R01CA279455, VA 1101BX004639-01 & DoD contract)

Why Biologics? Top Selling Drugs in 2018

	DRUG	INDICATION	COMPANY	REVENUE (in Millions)	MC F	NTHLY RICE
1	HUMIRA ® (Adalimumab)	Immunology (RA An	ntibody targeting	$\Gamma NF-\alpha$	\$	6,600
2	ELIQUIS ® (Apixaban)	Blood Clot	Bristol-Myers Scuibb	\$ 9,879	\$	472
3	REVLIMID ® (Lenalidomide)	Blood-related Disord	ers Celgene	\$ 9,690	\$	21,000
4	OPDIVO ® (Nivolumab)	Oncology A	ntibody blocking	PD-1 \$ 330	\$	12,500
5	ENBREL® (Etanercept)	Immunology (RA A	ntibody targeting	$\Gamma NF-\alpha$	\$	5,560
6	KEYTRUDA® (Pembrolizumab)	Oncology Antibody	targeting PD-1 re	eceptor ₇₀	\$	13,500
7	HERCEPTIN ® (Trastuzumab)	Oncology A	Antibody targeting	HER2	\$	6,391
8	EYLEA® (Aflibercept)	Retinal Disease (AM Fc fusion p	D) _ protein inhibiting `	\$ VEGFs '0	\$	2,000
9	AVASTIN ® (Bevacizumab)	Oncology Anti	body inhibiting V	EGF-A ₀	\$	840
10	RITUXAN ® (Rituximab)	Oncology/Immunolog)) Antibody agains	st CD20,	\$	989
	Eight out of 10 top selling drug = Biologics					

Top Selling Drugs in 2020 and 2021

	2020			2021		
Rank	Drug S	Sale(10x\$B)	Rank	Drug	Sale(10x\$B)	
1	Humira	203.9	1	Comirnaty	368	\rightarrow Pfizer vaccine
2	Keytruda	143.8	2	Humira	207	
3	Revlimid	121.5	3	Spikevax	177	→ Moderna vaccine
4	Eliquis	91.7	4	Keytruda	172	
5	Imbruvica	84.3	5	Eliquis	167.3	
6	Eylea	83.6	6	Revlimid	128	
7	Stelara	79.4	7	Imbruvica	98	
8	Opdivo	79.2	8	Stelara	91	
9	Biktarvy	72.6	9	Eylea	89	
10	Xarelto	69.3	10	Biktarvy	86	
11	Enbrel	63.7	11	Opdivo	85	
12	Prevnar 13	59.5	12	Xarelto	75	
13	Ibrance	53.9	13	Ronapreve	75	
14	Avastin	53.2	14	Trulicity	65	
15	Trulicity	50.7	15	Darzalex	60	
16	Ocrevus	46.1	16	Trikafta/Kaftrio	57	
17	Rituxan	45.2	17	Gardasil 9	57	
18	Xtandi	43.9	18	Dupixent	56	
19	Tagrisso	43.3	19	Veklury	().56副志康	
20	Remicade	41.95	20	Ibrance	54	

Our designed first generation of therapeutic enzymes studied in Phase II clinical trials in humans

Presentation (11/17/2021) as one of the six Finalists for

Gordon Bell Special Prize in COVID-19

ACM (Association of Computing Machinery)

(Highlighted in Nature Computational Science in 2021)

FEP-based large-scale virtual screening for effective drug discovery against COVID-19 and clinical trials

Zhe Li, Chengkun Wu, Yishui Li, Runduo Liu, Kai Lu, Ruibo Wang, Jie Liu, Chunye Gong, Canqun Yang, Xin Wang, Chang-Guo Zhan, and Hai-Bin Luo

Contents

Unmet need of rapid drug discovery against COVID-19 and other infectious diseases with pandemic potential – Computational challenges

- Virtual screening of drugs via Free Energy Perturbation (FEP) based absolute binding free energy (ABFE) calculations
- III Large-scale virtual screening on Tianhe supercomputer
- IV Experimental results from in vitro and in vivo validations
- V Clinical outcomes
- VI Concluding remarks Innovation and outlook

Virus SARS-CoV-2 has generated hundreds of variants within 0.5 year

Siobain Duffy, PLoS Biology, 2018. with modifications

High Mutation Rate of Viruses

0.5 year hundreds of variants

https://covid.cdc.gov/covid-data-tracker

Emerging New Variants/Viruses

Drug discovery: Not fast enough against viruses with a high mutation rate

CADD: Predicting binding affinity of each potential drug candidate with a given target

Lock and key model for drug-target interaction $\begin{array}{c} & & \\ & &$

Key point in CADD:

To reliably predict binding free energy of each potential drug candidate with a given drug target

Limitation of traditional computational methods for binding free energy prediction

Statistical mechanical methods **Scoring function** End point methods (Molecular docking) (MM-PBSA) (FEP – Free Energy Perturbation) $\Delta G = -\frac{1}{\rho} \ln \left\langle e^{-\beta (U_1(x) - U_0(x))} \right\rangle_{\mathcal{O}}$ ΔG_{Bind} Calculated free energy: 5.0 kc AB **Solvent** Solvent $\Delta G_{\text{Bind}} = \Delta G_{\text{AB}} - \Delta G_{\text{A}} - \Delta G_{\text{B}}$ Fast (billions of compounds) Moderate speed Theoretically rigorous for relative Inaccurate, low hit rate (~2%)^a • Moderate, hit rate (<10%)^b binding free energy calculation Not designed for virtual screening Time consuming **Unmet need**: A truly accurate and efficient computational approach to absolute binding free energy calculations suitable for virtual screening

Contents

Unmet need of rapid drug discovery against COVID-19 and other infectious diseases with pandemic potential – Computational challenges

24

- III Large-scale virtual screening on Tianhe supercomputer
- IV Experimental results from in vitro and in vivo validations
- V Clinical outcomes
- VI Concluding remarks Innovation and outlook

Why was FEP difficult for absolute binding free energy (ABFE) calculation?

FEP was designed to simulate a "perturbation" – a minor change of molecular structure; Computational simulation of the *perturbation* is reliable only for a truly *minor* structural change.

$$\mathbf{A} = -\frac{1}{\beta} \ln \mathbb{E} \exp[-\beta \Delta \mathcal{H}(\mathbf{x}, \mathbf{p}_x)] \rangle_0 = -\frac{1}{\beta} \ln \iint \exp[-\beta \Delta \mathcal{H}(\mathbf{x}, \mathbf{p}_x)] P_0(\mathbf{x}, \mathbf{p}_x) \, \mathrm{d}\mathbf{x} \, \mathrm{d}\mathbf{p}_x$$

Current FEP: simulate a minor structural change

Relative binding free energy

- Changing < 10 atoms
 - Easy to calculate

Needed FEP: simulate disappearance of an entire molecule

Absolute binding free energy

Changing 50 ~ 100 atoms

Difficult to calculate

Phase space

Major problems preventing FEP-ABFE calculations-based virtual screening

Add intermediate states

To deal with the large change, one must add many intermediate states, which means that one has to perform many FEP simulations for each FEP ABFE prediction--Computationally time-consuming

Technically, to reliably evaluate conformational entropy contribution to ABFE, certain restraints are required. The choice of restraints required is case by case --*Difficult for automated virtual screening*

Our solution to the problems:

- A restraint energy distribution (RED) function derived and used to minimize the # of intermediate states required for a converged ABFE calculation.
- A unique algorithm enabling to automatically identify restraints (with three ligand atoms and three target atoms, restrained to their equilibrium).

Performance of our novel approach to the conformational entropy estimation

FEP-ABFE protocol used in this work

Pre-equilibrate MD
 Turn off charges (5 λ)

Acceleration of FEP-ABFE calculation using the new protocol on Tianhe HPC

A single 8-cores server Traditional protocol

Tianhe supercomputer New protocol

Contents

- Unmet need of rapid drug discovery against COVID-19 and other infectious diseases with pandemic potential Computational challenges
- Virtual screening of drugs *via* Free Energy Perturbation (FEP)
 based absolute binding free energy (ABFE) calculations

III Large-scale virtual screening on Tianhe supercomputer

- IV Experimental results from *in vitro* and *in vivo* validations
- V Clinical outcomes
- VI Concluding remarks Innovation and outlook

Choose key targets for large-scale FEP-ABFE based virtual screening

Large-scale virtual screening on Tianhe supercomputer

Total number of MD simulation jobs (4 ns / MD simulation)

Target	Ligand DB	Pre-Equilibrate	Ligand	Complex
	FDA	100	2000	2100
M ^{pro}	Chemdiv	3143	62860	66003
	SPECS	3027	60540	63567
TNADDSS2	Chemdiv	3004	60060	63084
	SPECS	2825	56500	59325
Total		12099	241960	254079
		508,138		

Intelligent job management system (>500,000 MD simulation tasks)

Computational resource and time used for the large-scale virtual screening

Time for the virtual screening with single precision

大河 大河 「大河 高性能 子	£17 £19	Job Type	System used	Time (including IO)
unning x x y y y y y y y y y y y y y y y y y		Pre-Equilibrate	12,000 nodes	27.4 h
		Ligand	63,000 nodes	23.7 h
		Complex	75,000 nodes	114.5 h
		Total	1,200,000 CPU cores 75,000 nodes	141.9 h

Contents

- Unmet need of rapid drug discovery against COVID-19 and other infectious diseases with pandemic potential Computational challenges
- Virtual screening of drugs via Free Energy Perturbation (FEP) based absolute binding free energy (ABFE) calculations
- III Large-scale virtual screening on Tianhe supercomputer

V Experimental results from *in vitro* and *in vivo* validations

- V Clinical outcomes
- VI Concluding remarks Innovation and outlook

Experimental validation of the computational predictions

Hits against M^{pro}

	II Database	Number of tested compounds	≥50% Inhibition at 100 μM	≥33% Inhibition at 100 μM
	SPECS	38	18	24
	ChemDiv	35	16	19
	FDA	25	16	20
Bioassay Pro	otocol Total	98	50 (51%)	63 (64%)

Experimental validation of the computational predictions

Hits against TMPRSS2

	Database	Number of tested compounds	≥50% Inhibition at 100 µM	≥33% Inhibition at 100 μM
	SPECS	35	9	24
	ChemDiv	31	7	20
Bioassay Protocol	Total	66	16 (24%)	44 (67%)

Superior performance of the FEP-ABFE predictions compared to the MM-PBSA

 $\Delta G_{\rm FEP}$

 $|\Delta G_{FEP} - \Delta G_{EXP}| = \Delta G_{MM-PBSA} = |\Delta G_{MM-PBSA} - \Delta G_{EXP}|$

SC SC

40

Representative Hits

Further consideration in repurposing a drug for treatment of COVID-19 patients: Known functions of the drug

1) Active M^{pro} inhibitors from known FDA-approved drugs

Inspiration: Identify a drug with both anti-viral and anti-thrombosis activities

Clinical variables in 124 patients with COVID-19

	Variable	Range for normal subjects	Range for COVID-19 patients (Total number = 124)
	PLT (109/L)	125-350	191.7 ± 80.0 (54-525)
	Lymphocyte (109/L)	1.1-3.2	0.9 ± 0.6 (0.1-5.0)
	MPV (fL)	6-12	9.1 ± 1.3 (6.6-12.3)
	PT (S)	9.4-12.5	13.0 ± 1.4 (8.6-17.8)
	APTT (S)	25.1-36.5	30.3 ± 3.2 (22.4-38.1)
	FIB (mg/dL)	238-498	429.8 ± 88.7 (203-750)
	D-dimer (µg/L)	0-500	1168.6 ± 3652.7 (35-26315)
rsi	tv		Liu XY, et al, Acta Pharm. Sin. B. 2020.

Zhongnan Hospital of Wuhan University

Prof. Fuling Zhou

Head of hematology

Hypercoagulability was associated with COVID-19 disease severity.

Identified clinical candidate against COVID-19: Persantine (Dipyridamole or DIP)

In vitro and in vivo validation: Emergency drug discovery

Liu XY, et al, Acta Pharm. Sin. B. 2020.

43

Contents

- Unmet need of rapid drug discovery against COVID-19 and other infectious diseases with pandemic potential Computational challenges
- Virtual screening of drugs via Free Energy Perturbation (FEP) based absolute binding free energy (ABFE) calculations
- III Large-scale virtual screening on Tianhe supercomputer
- IV Experimental results from in vitro and in vivo validations

VI Concluding remarks – Innovation and outlook

DIP adjunctive therapy improved the coagulation profiles and shortened the time for discharging the patients

The mechanism of dipyridamole: Anti-viral and anti-thrombosis

Ongoing clinical trials of dipyridamole against COVID-19 (by other independent groups)

Trial and Title	NCT04424901: Open Label Dipyridamole- In Hospitalized Patients With COVID-19	NCT04410328: Aggrenox To Treat Acute COVID-19	NCT04391179: Dipyridamole to Prevent Coronavirus Exacerbation of Respiratory Status (DICER) in COVID-19
Trial Type	Randomized Phase II Open Label clinical trial	Randomized Phase III clinical trial	Randomized Phase II clinical trial
Status	Recruiting	Recruiting	Completed; results not yet disclosed
Conditions	 COVID-19 Pneumonia Vascular Complications 	≻ COVID-19	 COVID Corona Virus Infection COVID-19 SARS-CoV-2 Infection
Interventions	Drug: Dipyridamole (Standard Care vs Standard Care with Dipyridamole)	 Drug: Dipyridamole ER 200mg/ Aspirin 25mg orally/enterally and Standard of care Other: Standard of care 	 Drug: Dipyridamole 100 Milligram(mg) Drug: Placebo oral tablet
Locations	UConn Health, Farmington, Connecticut, United States	Rutgers New Jersey Medical School University Hospital, Newark, New Jersey, United States	University of Michigan, Ann Arbor, Michigan, United States 32

Contents

- Unmet need of rapid drug discovery against COVID-19 and other infectious diseases with pandemic potential Computational challenges
- Virtual screening of drugs via Free Energy Perturbation (FEP) based absolute binding free energy (ABFE) calculations
- III Large-scale virtual screening on Tianhe supercomputer
- IV Experimental results from in vitro and in vivo validations
- V Clinical outcomes

Summary of the major innovation and an unprecedentedly high hit rate

- Automated high-throughput FEP-ABFE calculation protocol
- Milestone: The first time FEP-ABFE was used in large-scale virtual screening
- Efficiency of FEP was greatly increased applied in emergency drug discovery

SC2

Outlook

Serve as a general approach for emergency drug discovery using a supercomputer like Tianhe to make us ready against next breakout

< C 2'

Concluding Remarks

- Discovery and development of a novel class of drug are usually a very long, complex process.
- Computational modeling and simulation can be valuable in accelerating the complex process.
- It is always important to develop more accurate and efficient computational approaches even with increasingly more powerful HPC resources.
- State-of-the-art computational methods can make truly valuable predictions.
- Integrated computational-experimental approaches are promising.

Acknowledgements

\$\$\$ from NIH (PIs):

UH2/UH3 DA041115 (Zhan); U01 DA051079 (Zhan); R01 DA035552 (Zhan); R01 DA032910 (Zhan); R01 DA025100 (Zhan); R01 DA021416 (Woods); R01 DA013930 (Zhan); R01 DA057866 (Zhan & Zhu); P20 GM130456 (Thorson); U01 HL152392 (Dwoskin) – KYNETIC project (Zheng); R01 CA187273 (Rangnekar); P01 NS097197 (Gentry); UL1 TR000117 (Kern, CTSA); R01 CA172379 (Liu); UG3/UH3 NS134920 (Zheng & Zhan); R01 CA188118 (Zhou); R01CA279455 (Yang); R41/R42 HD055009 (Yokel); R01 DA035714 (Zhan, Zhu, McLaughlin, PIs); RC1 MH088480 (O'Donnell & Zhan, PIs); R21 DA030667 (Zheng); R01 DK098176 (Wang); R01 CA222596 (Zhou); R56AI137020-1 (Wei); R01 GM122994 (Huang); U18 DA052319 (Zheng); R01 DA056646 (Zhan & Zheng) **\$\$\$ from NSF (PIs):** CHE-1111761 (Zhan); DMS-2245903 (Nguyen & Zhan)

\$\$\$ from DoD (PI):

W81XWH2211000 (Zhan); W15P7T-08-C-F600 (Cerasoli); W81XWH-16-1-0203 (Wei) \$\$\$ from US Department of Veterans Affairs (PI): VA I01 BX004639 (Li) \$\$\$ from DoE (PI): ARPA-E Award No. DE-AR0001503 (Pfleger) \$\$\$ from Other Resources:

ADDF grant, Institute for the Study of Aging (ISOA);

Tonix Pharmaceuticals; Aikido Pharma Inc.; ETI; Clear Scientific;

Reckitt Benckiser (Unrestricted/Gift funds to the Zhan Lab).

Supercomputing Time

University of Kentucky Computer Center