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What is metabolomics and why is it hard to analyze?
• Metabolomics is the systematic detection and characterization of small 

biomolecules generated from metabolism that are present in a biological 
sample.

• In comparison to other omics, the detected biomolecules are very 
chemically diverse and hard to comprehensively detect.

• Current metabolic databases are quite incomplete.

• Detection by any single analytical method (nuclear magnetic resonance 
spectroscopy or mass spectrometry) is grossly incomplete.

• Systematic analysis of metabolites is limited by metabolite detection, database 
completeness, and availability of standards for identification.



Given the difficulty, why use metabolomics?
• Allows a window into observing 

cellular and systemic metabolism.

• Changes in metabolism… 
• Reflect changes in cellular processes.
• Typically occur on second and minute 

time scales.
• Can be more easily achieved 

pharmacologically (via targeting 
enzymes).

• Are a product of many disease 
processes.

• No model of a living system or 
process is complete without a 
metabolic component. 

Metabolomics provides a 
culminating molecular phenotype 
representing a final product of 
gene regulation and expression. 



Metabolome Mining is (Potentially) an Easier Approach. 

• “Metabolome mining is defined as the use of metabolite features, with 
chemical and other annotations, to derive metabolic information that is 
interpretable in a biological or biomedical context.”

• https://www.mdpi.com/journal/metabolites/topical_collections/metabolome_mining 

• Identifying metabolites associated with specific metabolic pathways 
enables metabolic pathway enrichment analysis.

But most metabolites detected in metabolomics experiments do not have metabolic pathway annotations!

Pathway 
Enrichment

https://www.mdpi.com/journal/metabolites/topical_collections/metabolome_mining


Exploring Current State of the Art 
in Metabolic Pathway Involvement Prediction

Model / Feature Set Accuracy (%) Precision (%) Recall (%) F1

Hu et al. RF [1] 94.64 77.97 67.83 0.7254

Baranwal et al. GCN/RF [2] 97.58 ± .12 83.69 ± .78 83.63 ± .68 0.8366

Baranwal et al. GCN [2] 97.61 ± .12 91.61 ± .52 92.50 ± .44 0.9205

Yang et al. GAT [3] 97.50 ± .06 93.04 ± .28 93.22 ± .16 0.9313

Du et al. MLGL-MP [4] 98.64 ± 0.47 95.26 ± 2.25 94.21 ± 1.94 0.9473

Standard deviation of the model performance metrics across CV folds indicated by the ± symbol, if available from the publication.

RF – Random Forest; GCN – Graph Convolutional Network; GAT – Graph Attention Network; 

MLGL-MP - Multi-Label Graph Learning framework enhanced by pathway interdependence for Metabolic Pathway prediction

[1] Hu L-L, Chen C, Huang T, Cai Y-D, Chou K-C. PLoS ONE. 2011 Dec 29;6(12):e29491.

[2] Baranwal M, Magner A, Elvati P, Saldinger J, Violi A, Hero AO. Bioinformatics. 2020 Apr 15;36(8):2547–53.

[3] Yang Z, Liu J, Wang Z, Wang Y, Feng J. 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE; 

2020. p. 126–31.

[4] Du B-X, Zhao P-C, Zhu B, Yiu S-M, Nyamabo AK, Yu H, et al. Bioinformatics. 2022 Jun 24;38(Suppl 1):i325–32.

All of these methods used a Kyoto Encyclopedia of Gene and Genomes (KEGG) derived dataset with 

SMILES chemical structure representations (KEGG-SMILES dataset).

https://sciwheel.com/work/citation?ids=12071966&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8338215&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8338215&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14671660&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14631805&pre=&suf=&sa=0&dbf=0


KEGG-SMILES Dataset(s) Used
Model / Feature Set Data available Code available Dataset Size Publication Date

Hu et al. RF [1] No No 3,137 December 2011

Baranwal et al. GCN/RF [2] Yes Yes 6,669* April 2020

Baranwal et al. GCN [2] Yes Yes 6,669* April 2020

Yang et al. GAT [3] No No 6,669* December 2020

Du et al. MLGL-MP [4] Yes Yes 6,648* June 2022

*Publications using the dataset originating with Baranwal et al.

https://sciwheel.com/work/citation?ids=12071966&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8338215&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8338215&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14671660&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14631805&pre=&suf=&sa=0&dbf=0


Data Leakage Problem in Baranwal KEGG-SMILES Dataset
Label ID Pathway Category Number Of Compounds 

In Dataset (Original)
Fraction Of Dataset 

(Original)
Percentage Of 

Duplicates
Number Of Compounds In 

Dataset (De-duplicated)
Fraction Of Dataset 

(De-duplicated)

0 Carbohydrate metabolism 1126 0.169 67.05 371 0.075

1 Energy metabolism 750 0.113 72.80 204 0.041
2 Lipid metabolism 1066 0.16 38.93 651 0.132
3 Nucleotide metabolism 342 0.051 49.12 174 0.035

4 Amino acid metabolism 1440 0.217 54.37 657 0.133

5 Metabolism of other amino 
acids

597 0.09 59.80 240 0.049

6 Glycan biosynthesis and 
metabolism

325 0.049 64.00 117 0.024

7 Metabolism of cofactors and 
vitamins

948 0.143 44.83 523 0.106

8 Metabolism of terpenoids and 
polyketides

1483 0.223 35.13 962 0.195

9 Biosynthesis of other 
secondary metabolites

1906 0.287 35.78 1224 0.248

10 Xenobiotics biodegradation 
and metabolism

1452 0.218 32.58 979 0.199

N/A Total Dataset 6,648 N/A 25.86 4,929 N/A

Over 25% of the dataset are complete duplicates!  This creates a catastrophic data leakage problem for training!



The Good, the Bad, and the Ugly!
The Bad

• A catastrophic data leakage was created within the Baranwal KEGG-SMILES dataset.

The Ugly

• This dataset affected at least 3 publications in highly reputable journals and 
conferences, since none of the authors properly vetted the dataset.

The Good (Silver Lining)

• Baranwal et al and Du et al followed many best practices for scientific reproducibility in 
computational research, enabling the detection of this catastrophically-flawed dataset 
and highly flawed results.

• These analyses are available in the following preprint and are under review:
• Erik D. Huckvale and Hunter N.B. Moseley. "A cautionary tale about properly vetting datasets used in 

supervised learning predicting metabolic pathway involvement" bioRxiv 2023.10.03.560711 (2023).

• These findings prompted us to create a new benchmark dataset for metabolic pathway 
involvement prediction, which was recently published:

• Erik D. Huckvale, Christian D. Powell, Huan Jin, and Hunter N.B. Moseley. "Benchmark dataset for 
training machine learning models to predict the pathway involvement of metabolites" 
Metabolites 13, 1120 (2023).



New Benchmark Dataset 
for Metabolic Pathway Involvement Prediction

Erik D. Huckvale, Christian D. Powell, Huan Jin, and Hunter N.B. Moseley. "Benchmark dataset for training machine learning models to predict the pathway involvement of metabolites" 
Metabolites 13, 1120 (2023).

Dataset Creation Workflow Machine Learning Workflow



New Benchmark Dataset 
for Metabolic Pathway Involvement Prediction

Erik D. Huckvale, Christian D. Powell, Huan Jin, and Hunter N.B. Moseley. "Benchmark dataset for training machine learning models to predict the pathway involvement of metabolites" 
Metabolites 13, 1120 (2023).

Pathway-Specific XGBoost PerformanceOverall Model Performance Comparison



New Benchmark Dataset 
for Metabolic Pathway Involvement Prediction

Erik D. Huckvale, Christian D. Powell, Huan Jin, and Hunter N.B. Moseley. "Benchmark dataset for training machine learning models to predict the pathway involvement of metabolites" 
Metabolites 13, 1120 (2023).

Most Important Pathway-Specific FeatureXGBoost Feature Importance Per Pathway



Novel Metabolite-Pathway Paired Feature Model

Metabolite-Pathway Feature Fusion

Erik D. Huckvale and Hunter N.B. Moseley. "Predicting The Pathway Involvement Of Metabolites Based on 
Combined Metabolite and Pathway Features" bioRxiv 2024.04.01.587582 (2024).



Performance of Metabolite-Pathway Paired Model

• 0.013 Mathews Correlation Coefficient 
(MCC) standard deviation across 1000 CV 
folds is an order of magnitude 
improvement in robustness over the 
previous models.



Untargeted lipidomics of non-small cell lung carcinoma demonstrates 
differentially abundant lipid classes in cancer vs non-cancer tissue
Joshua M. Mitchell, Robert M. Flight, and Hunter N.B. Moseley. 

Metabolites 11, 740 (2021).
• Most untargeted approach to metabolomics which derives molecular 

formula from Fourier transform mass spectra using SMIRFE (US patent 
10,607,723 B2). 

• Resulting molecular formulas were classified into lipid categories and 
classes using a hierarchical set of Random Forest binary classifiers.

• High abundances of sterol esters were observed in NSCLC tissue, 
suggesting altered SCD1 or ACAT1 activity.

• Low abundances of cardiolipins were observed, suggesting altered human 
cardiolipin synthase 1 or lysocardiolipin acyltransferase activity which is 
known to confer apoptotic resistance.

Category Total 
More-Abundant Features Less-Abundant Features

Expected Observed p-adjust Expected Observed p-adjust

Fatty Acyls [FA] 12 2.989 2 1 3.947 0 1

Glycerophospholipids [GP] 205 51.055 37 1 67.424 88 0.00503

Prenol Lipids [PR] 5 1.245 0 1 1.644 0 1

Sphingolipids [SP] 281 69.983 79 0.09861 92.420 81 1

Sphingolipids [SP] – Low M/Z 33 8.219 3 1 10.854 16 0.141

Sphingolipids [SP] – High M/Z 248 61.764 76 0.00967 81.567 65 1

Sterol Lipids [ST] 23 5.728 13 0.00643 7.084 3 1



Machine learning methods are expanding the applications of 
annotation enrichment analysis. 

Mitchell et al., "Deriving Accurate Lipid Classification based on Molecular Formula" Metabolites 10, 122 (2020). https://doi.org/10.3390/metabo10030122 

LMSD + LMISSD + HMDB_non_Lipid Model Performance (Category)

Category Precision
Out-of-Bag 

Accuracy
Number of Entries True Positives False Positives

Fatty Acyls [FA] 0.837 0.939 2031 1659 322

Glycerolipids [GL] 0.995 0.993 2715 2696 14

Glycerophospholi

pids [GP] 
0.979 0.979 9766 9706 206

Polyketides [PK] 0.768 0.933 1376 979 295

Prenol Lipids [PR] 0.985 0.983 473 259 4

Saccharolipids 

[SL] 
1.000 0.998 102 99 0

Sphingolipids [SP] 0.976 0.976 3089 2875 72

Sterol Lipids [ST] 0.935 0.983 824 702 49

not_lipid 0.928 0.882 7587 6845 532

• Predicts lipid category and class from features based on molecular formula using a 
hierarchical set of binary Random Forest classifiers.

• Uses LipidMaps database of known and theoretical lipids and the Human 
Metabolome Database for non-lipid examples.

• Average accuracy >90% 
• Average precision >83%

This is good enough for 
annotation enrichment 
analysis!

https://doi.org/10.3390/metabo10030122


gpu_tracker: Python package for tracking and profiling GPU 
utilization in both desktop and 

high-performance computing environments 
• Has both an API and CLI for profiling single 

and multiprocessing tasks that utilize 
GPUs.

• Provides both max RAM and GPU RAM 
utilization of a given computational task.

• Designed for Linux, but works on Windows 
and MacOS.

• CLI Example:
% gpu-tracker -e 'bash example-script.sh' --tu=seconds --gru=megabytes --ru=megabytes
Resource tracking complete. Process completed with status code: 0
Max RAM:
   Unit: megabytes
   System capacity: 67254.166
   System: 2458.182
   Main:
      Total RSS: 3.072
      Private RSS: 0.373
      Shared RSS: 2.699
   Descendents:
      Total RSS: 830.271
      Private RSS: 708.19
      Shared RSS: 122.081
   Combined:
      Total RSS: 831.537
      Private RSS: 708.563
      Shared RSS: 122.974

Max GPU RAM:
   Unit: megabytes
   Main: 0.0
   Descendents: 314.0
   Combined: 314.0
Compute time:
   Unit: seconds
   Time: 3.316 

UML Class Diagram

Erik D. Huckvale and Hunter N.B. Moseley. "gpu_tracker: Python package for tracking and profiling GPU utilization in both desktop and high-performance computing environments" arXiv arXiv:2404.01473 (2024).



Conclusions and Future Goals

• We have developed a high-quality benchmark dataset for building 
metabolic pathway prediction models.

• We have developed the most robust models so far for metabolic 
pathway prediction. 

• We are confident that achieving an average MCC > 0.9 will produce 
predicted metabolic pathway annotations useful for pathway 
enrichment analysis.

• Along the way we created a useful tool for profiling GPU utilization 
of HPC jobs, especially involving machine learning models.
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kegg_pull: a Software Package for the RESTful 
Access and Pulling from KEGG
• Promote the FAIR (Findable, Accessible, Interoperable, and Reusable) 

guiding principles of data stewardship with respect to KEGG. 
• Improves on the accessibility, interoperability, and reusability of the KEGG API. 

• Makes the utilities of the KEGG API accessible to Python programmers 
through an application programming interface (API). 

• Makes these utilities accessible to command line users either for 
shellbash scripting or for executing one-time commands without 
needing to write any script at all.

Erik Huckvale and Hunter N.B. Moseley. "kegg_pull: a Software Package for the RESTful Access and Pulling from The Kyoto Encyclopedia of Gene and Genomes" BMC Bioinformatics 24, 78 (2023).



kegg_pull Improvements Over Prior Packages
1. Provides a command line interface.

2. Provides sleep and pull redundancy to handle KEGG’s blacklisting.

3. Provides multiprocessing and URL construction speed 
improvements.

Sleep Time 
(seconds)

0.0 0.5 1.0 2.0 3.0 5.0 10.0

Percent Success 94.68 94.89 96.78 99.78 100.0 100.0 100.0

Pull Time 
(minutes)

12.99 16.03 14.69 10.82 8.51 8.44 8.7

Number of minutes spent attempting to pull all the entries in the KO KEGG database. Percent success is the percentage of the entries in the KO 
database that were successfully pulled while the others failed. Difference in pull time and percent success varies by the --sleep-time option on 
the kegg_pull CLI. All other options remained the same, including the use of multiprocessing. Values were collected on a 12 core 
(hyperthreaded) machine using 12 processes.

Database Name Multi-process Pull 
Time

Single Process 
Pull Time

Number Of 
Entries

Pathway 0.1 1.05 558
Compound 6.4 73.62 19,004

KO 8.32 74.0 25,458
The amount of time to pull and save all the entries of a given database on a single process (one core) compared to pulling 
across multiple processes (multiple cores). The above values result from running kegg_pull on a 12 hyper-threaded core 
machine using 12 processes for multiprocessing and one process for single-processing. The sleep time and all other 
options for each were also constant. Files were saved in a regular directory.

Database 
Name

One Entry At A Time Ten Entries At A Time
Sleep Time 5 

Seconds
Sleep Time 20 

Seconds
Sleep Time 5 

Seconds
Sleep Time 20 

Seconds 
Percent 
Success

Pull Time Percent 
Success

Pull 
Time

Percent 
Success

Pull 
Time

Percent 
Success

Pull 
Time

Module 98.69 1.34 100.0 1.59 100.0 0.06 100.0 0.07
Pathway 98.75 1.6 100.0 1.67 100.0 0.11 100.0 0.09

Compound 99.24 63.62 100.0 61.36 100.0 6.77 100.0 7.21

KO 99.39 83.91 100.0 90.4 100.0 8.42 100.0 9.22
The amount of time (minutes) to pull all the entries from a given database and the success percentage when pulling one entry 
at a time (with the --force-single-entry flag set) compared to pulling ten entries (maximum allowed by KEGG) per request. Each 
of these are compared to a lower sleep time vs. a higher sleep time. Results were collected on a 12 (hyperthreaded) core 
machine on 12 processes with all other options consistent.
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