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What is metabolomics and why is it hard to analyze?

* Metabolomics is the systematic detection and characterization of small
biomolecules generated from metabolism that are present in a biological
sample.

* In comparison to other omics, the detected biomolecules are very
chemically diverse and hard to comprehensively detect.
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e Current metabolic databases are quite incomplete.

e Detection by any single analytical method (nuclear magnetic resonance
spectroscopy or mass spectrometry) is grossly incomplete.

» Systematic analysis of metabolites is limited by metabolite detection, database
completeness, and availability of standards for identification.



Given the difficulty, why use metabolomics?

Metabolomics provides a
culminating molecular phenotype
representing a final product of
gene regulation and expression.
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* Allows a window into observing
cellular and systemic metabolism.

* Changes in metabolism...
* Reflect changes in cellular processes.
* Typically occur on second and minute

time scales.

e Can be more easily achieved
pharmacologically (via targeting

enzymes).

* Are a product of many disease

processes.

* No model of a living system or
process is complete without a
metabolic component.
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Metabolome Mining is (Potentially) an Easier Approach.

* “Metabolome mining is defined as the use of metabolite features, with
chemical and other annotations, to derive metabolic information that is
interpretable in a biological or biomedical context.”

* https://www.mdpi.com/journal/metabolites/topical collections/metabolome_mining

* Identifying metabolites associated with specific metabolic pathways

enables metabolic pathway enrichment analysis.
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But most metabolites detected in metabolomics experiments do not have metabolic pathway annotations!


https://www.mdpi.com/journal/metabolites/topical_collections/metabolome_mining

Exploring Current State of the Art
in Metabolic Pathway Involvement Prediction

Model / Feature Set Accuracy (%) Precision (%) Recall (%) n
Hu et al. RF [1] 94.64 77.97 67.83 0.7254

1
97.58 + .12 83.69 +.78 83.63 + .68 0.8366
97.50 = .06 93.04 + .28 93.22 + .16 0.9313
98.64 + 0.47 95.26 + 2.25 94.21+1.94 0.9473

Standard deviation of the model performance metrics across CV folds indicated by the * symbol, if available from the publication.
RF — Random Forest; GCN — Graph Convolutional Network; GAT — Graph Attention Network;

MLGL-MP - Multi-Label Graph Learning framework enhanced by pathway interdependence for Metabolic Pathway prediction

[1] Hu L-L, Chen C, Huang T, Cai Y-D, Chou K-C. PLoS ONE. 2011 Dec 29;6(12):€29491.

[2] Baranwal M, Magner A, Elvati P, Saldinger J, Violi A, Hero AO. Bioinformatics. 2020 Apr 15;36(8):2547-53.

[3] Yang Z, Liu J, Wang Z, Wang Y, Feng J. 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE;
2020. p. 126-31.

4] Du B-X, Zhao P-C, Zhu B, Yiu S-M, Nyamabo AK, Yu H, et al. Bioinformatics. 2022 Jun 24;38(Suppl 1):i325-32.

All of these methods used a Kyoto Encyclopedia of Gene and Genomes (KEGG) derived dataset with
SMILES chemical structure representations (KEGG-SMILES dataset).


https://sciwheel.com/work/citation?ids=12071966&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8338215&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8338215&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14671660&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14631805&pre=&suf=&sa=0&dbf=0

KEGG-SMILES Dataset(s) Used

Model / Feature Set Data available Code available Dataset Size Publication Date

No 3,137 December 2011
Yes Yes 6,669* April 2020
Yes Yes 6,669* April 2020
No No 6,669* December 2020

*Publications using the dataset originating with Baranwal et al.



https://sciwheel.com/work/citation?ids=12071966&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8338215&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8338215&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14671660&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14631805&pre=&suf=&sa=0&dbf=0

Data Leakage Problem in Baranwal KEGG-SMILES Dataset
Label ID Pathway Category Number Of Compounds | Fraction Of Dataset | Percentage Of Number Of Compounds In Fraction Of Dataset
In Dataset (Original) (Original) Duplicates Dataset (De dupllcated) (De-duplicated)

Carbohydrate metabolism 1126 0.169 67.05 0.075
n Energy metabolism 750 0.113 72.80 204 0.041
2 Lipid metabolism 1066 0.16 38.93 651 0.132
IR Nucleotide metabolism 342 0.051 49.12 174 0.035
I Amino acid metabolism 1440 0.217 54.37 657 0.133
— Metabolism of other amino 597 0.09 59.80 240 0.049
acids
— Glycan biosynthesis and 325 0.049 64.00 117 0.024
metabolism
Metabolism of cofactors and 948 0.143 44.83 523 0.106
vitamins
— Metabolism of terpenoids and 1483 0.223 35.13 962 0.195
polyketides
— Biosynthesis of other 1906 0.287 35.78 1224 0.248
secondary metabolites
“ Xenobiotics biodegradation 1452 0.218 32.58 979 0.199
and metabolism
Total Dataset 6,648 N/A 25.86 4,929 N/A

Over 25% of the dataset are complete duplicates! This creates a catastrophic data leakage problem for training!



The Good, the Bad, and the Ugly!
The Bad

* A catastrophic data leakage was created within the Baranwal KEGG-SMILES dataset.
The Ugly

* This dataset affected at least 3 publications in highly reputable journals and
conferences, since none of the authors properly vetted the dataset.

The Good (Silver Lining)

* Baranwal et al and Du et al followed many best practices for scientific reproducibility in
computational research, enabling the detection of this catastrophically-flawed dataset
and highly flawed results.

* These analyses are available in the following preprint and are under review:

* Erik D. Huckvale and Hunter N.B. Moseley. "A cautionary tale about properly vetting datasets used in
supervised learning predicting metabolic pathway involvement" bioRxiv 2023.10.03.560711 (2023).

* These findings prompted us to create a new benchmark dataset for metabolic pathway
involvement prediction, which was recently published:
e Erik D. Huckvale, Christian D. Powell, Huan Jin, and Hunter N.B. Moseley. "Benchmark dataset for

training machine learning models to predict the pathway involvement of metabolites”
Metabolites 13, 1120 (2023).



New Benchmark Dataset

Dataset Creation Workflow

Total number of compound entries in KEGG

/ 19,119

Final Dataset

for Metabolic Pathway Involvement Prediction

\
\

Machine Learning Workflow

Computational —|

Number of compounds linked to pathways

/ 6,736
/ 6,234
/ 6,144
/ 6,142

\
\
\

\ Number of compounds after filtering those without enough non-hydrogen
atoms

Number of compounds linked to the hierarchy pathway categories

Number of compounds with a molfile available in KEGG

Number of compounds after removing duplicate molfiles

Manual—

5,884

Merge repeat unit compounds with duplicate feature vectors, pragmatically
treated as identical compounds
Merge compounds with duplicate feature vectors, pragmatically treated
as identical compounds since one has pathway labels that are a
superset of the labels of the other(s

Merge compounds that result in duplicate feature vectors due to
lack of stereochemistry information in the molfile.

5,883

5,876

5,847
Remove compounds with R groups that are a protein or nucleic /
7

acid and are not metabolites

Remove compounds with repeat units and a feature vector
that's a duplicate of that of a non-repeat compound 5,688

\ Merge compounds that only differ by charge / 5.684

Merge compounds that are the same compound but
with different KEGG IDs

Train On The Full

| Dataset. Split EachCV |

k.

| and Non Ambiguous |
Subsets

Train On The Non | Train A Binary
| Fold Into A Full, Non Ambiguous Subset. | | Classifier For |
v | Ambiguous, and | | Evaluate On The Entire | Each Pathway |
Tune I Ambiguous Sub Fold. | | CVFoldAnd The | Category.
Hyperparameters Evaluate On Each Sub | ' Ambiguous Subset. | —
And Train Fold. A
Autoencoder 'y Y I
| Collect Results For Each
| Model, Trained On Baoth
Datasets, Evaluated On
| Tune hyperparameters | | Tune hyperparameters | | Each Test Set, For Each |
v | For Each Pathway | | For Each Pathway | | Pathway Category, For Each |
Category On The Full | | Category On The Non | | Metric: Accuracy, Precision, |
Autoencoder Dataset Ambiguous Subset | | Recall, F1-Score, MCC, and |
'y Y Unit-normalize MCC.
Nan . Hyperparameters Tuned,
Yy Full Dataset Ambiguous Anézlg:;us Trained, and Evaluated
Autoencode Final *_ Subset with RF and XGBoost
Dataset
. Encoded Non Encoded Hyperparameters Tuned,
Fug;ﬂs mEd Ambiguous Ambiguous Trained, and Evaluated
Subset Subset With MLP
3
h 4 h 4
Encociad Datsset ’_:'-Sep.a!ate Ambiguous

Erik D. Huckvale, Christian D. Powell, Huan Jin, and Hunter N.B. Moseley. "Benchmark dataset for training machine learning models to predict the pathway involvement of metabolites"
Metabolites 13, 1120 (2023).



New Benchmark Dataset
for Metabolic Pathway Involvement Prediction

Overall Model Performance Comparison

Pathway-Specific XGBoost Performance
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Erik D. Huckvale, Christian D. Powell, Huan Jin, and Hunter N.B. Moseley. "Benchmark dataset for training machine learning models to predict the pathway involvement of metabolites"

Metabolites 13, 1120 (2023).




New Benchmark Dataset
for Metabolic Pathway Involvement Prediction

XGBoost Feature Importance Per Pathway Most Important Pathway-Specific Feature

Erik D. Huckvale, Christian D. Powell, Huan Jin, and Hunter N.B. Moseley. "Benchmark dataset for training machine learning models to predict the pathway involvement of metabolites"

Metabolites 13, 1120 (2023).
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Novel Metabolite-Pathway Paired Feature Model

ﬁathway Feature Vector Creation

For each pathway category P, of pathway categonas
Pyto Pyp

Metabolite-Pathway Feature Fusion

Subset of metabolite
Sum into single

feature vectors associated

with pathway category P, foature vector
Metabolite feature vectors For both non-encoded and encoded sets of feature vectors
For each metabolite feature  For each pathway feature
vector M; 10 Msgas vector Py to Py;
Concatsnate | P, feature vector | M, P, Metabolite-pathway-pair 1
an
—dupli Mz P Metabolite-pathway-pair 2
Pathway feature vectors | de-duplicate | P2 feature vector ! ) P P )
Ma P, Metabolite-pathway-pair 3
| P12 feature vector y
Cross-join to make Mses1 P, Metabalite-pathway-pair 5,681
. metabolite-pathway-pair ) )
Metabolite feature vectors features Msgaz2 Py Metabolite-pathway-pair 5,682
N lizati [ :> Msia3 P, Metabolite-pathway-pair 5,683
. OI'I:IfEl izatlon ot S . o M, Pz Metabolite-pathway-pair 5,684
or each feature vector (bot eparate feature vector by ) _
metabolite and pathway) bond inclusion and softmax Concatenate back together Mz Pz Metabolite-pathway-pair 5,685
| Feature vector '::>D |:| | || Normalized feature vector Ms Pz Metabalite-pathway-pair 5,686
‘J\ ]/- M Pis Metabolite-pathway-pair 62,513
@coding \ Mz Piso Metabolite-pathway-pair 62,514
For both sets of normalized feature M3 Pi2 Metabolite-pathway-pair 62,515
vectors (metabolite and pathway)
Pathway feature vectors
Y Ms68a1 Pis Metabolite-pathway-pair 68,194
Msigz2 Pis Metabolite-pathway-pair 68,195
Min-max Min-max Mseaa Py Metabolite-pathway-pair 68,196
Normalized feature scale Auto- Encoded
vectors (non- encoder feature
encoded) vectors

\L

V

Erik D. Huckvale and Hunter N.B. Moseley. "Predicting The Pathway Involvement Of Metabolites Based on
Combined Metabolite and Pathway Features" bioRxiv 2024.04.01.587582 (2024).




Performance of Metabolite-Pathway Paired Model

Performance By Model
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Untargeted lipidomics of non-small cell lung carcinoma demonstrates
differentially abundant lipid classes in cancer vs non-cancer tissue
Joshua M. Mitchell, Robert M. Flight, and Hunter N.B. Moseley.
MEtObO//tGS 11’ 740 (2021)_ Log2 Fold Changes of Consistent

i i ) Assigned Metabolites
* Most untargeted approach to metabolomics which derives molecular A _)
formula from Fourier transform mass spectra using SMIRFE (US patent
10,607,723 B2). S t,."u@.'h
* Resulting molecular formulas were classified into lipid categories and 3 o} = ‘.
classes using a hierarchical set of Random Forest binary classifiers. B & R #
* High abundances of sterol esters were observed in NSCLC tissue, = | |
suggesting altered SCD1 or ACAT1 activity. 60 900 1200 1500

* Low abundances of cardiolipins were observed, suggesting altered human B 1o

cardiolipin synthase 1 or lysocardiolipin acyltransferase activity which is
known to confer apoptotic resistance. °

>

More-Abundant Features ujé» o—@—;; %
Expected Observed p-adjust Expected Observed p-adjust 5 crj

12 2.989 2 1 3.947 0 1 . ¢

205 51.055 37 1 67.424 88 0.00503 ' £ ' '

5 1.245 0 1 1.644 0 1 < 8 & 5

281 69.983 79 0.09861 92.420 81 1 A g g s

33 8219 3 1 10.854 16 0.141 z: £ £ 3

Sphingolipids [SP] — High M/Z|BPLE] 61.764 76 0.00967 81.567 65 1 N 8 @ @

23 5.728 13 0.00643 7.084 3 1 VotedCategories



Machine learning methods are expanding the applications of
annotation enrichment analysis.

* Predicts lipid category and class from features based on molecular formula using a
hierarchical set of binary Random Forest classifiers.

* Uses LipidMaps database of known and theoretical lipids and the Human
Metabolome Database for non-lipid examples.

Hierarchical Models
Query

Feature

Palmitic Acid C,;H,0
~(_ Glycerolipids [GL] ) 1. Calculate Theoretical Monoisotopic Mass = AC; * Myac + ACy * My + ACq * Mygo + Ny * Mygy

Vector Monoisotopic Mass Monoisotopic Mass = 16 * 12 + 32 * 1.0078250321 + 2 * 15.9949146196
Monoardylglycerols [GLOL] ] Monoisotopic Mass = 256,240230266
Diardylglycerols [GL02] J
e 2. Calculate Unsaturation = 4*#C + 3"#N + 2*#0 + 6*#P + 6"#S — (#H + #X) -
. Unsaturation ZX(HCHEN+#HO+HP+#S-1)
~(_ senlupsisn ) Unsaturation = 4*16+2°2 — (32) — 2*(16+2-1)
Sterols [STO1] ] Unsaturation = 2
Steroids [ST02] ] 3. Build Feature Vector Feature = <mass, tens, ones, tenths, unsaturation, #X, #H+#X, #C, #N, #O, #P, #S, #H>
Feature = <256.240230266, 5, 6, 2, 2, 0, 32+0, 16,0, -, 0, 0, 32>
L. Feature = <256.240230266, 5, 6, 2, 2, 0, 32, 16,0, -, 0, 0, 32>

LMSD + LMISSD + HMIDB non_Lipid Model Performance (Categor

. Out-of-Bag . . -
Category Precision Number of Entries True Positives False Positives
Accuracy
.a;muiﬂ. 0.837 0.939 2031 1659 322
° 0,
Average accuracy >9OA’ Glycerolipids [GL] 0.995 0.993 2715 2696 14
1c1 (o) Glycerophospholi
* Average precision >83% Y ,dp[GP;’ 0.979 0.979 9766 9706 206
pids
Polyketides [PK] 0.768 0.933 1376 979 295
. . Prenol Lipids [PR] 0.985 0.983 473 259 4
This is good enough for Saccharolipids
[st] 1.000 0.998 102 99 0
annOtatlon eanChment Sphingolipids [SP] 0.976 0.976 3089 2875 72
ana IySiS | Sterol Lipids [ST] 0.935 0.983 824 702 49
[ not lipid | 0.928 0.882 7587 6845 532

Mitchell et al., "Deriving Accurate Lipid Classification based on Molecular Formula" Metabolites 10, 122 (2020). https://doi.org/10.3390/metabo10030122



https://doi.org/10.3390/metabo10030122

gpu_tracker: Python package for tracking and profiling GPU
utilization in both desktop and

high-performance computing environments
* Has both an APl and CLI for profiling single

and multiprocessing tasks that utilize P trackar racker FSSvaNIes
GPUS. UML CIaSS Diagram total_rss: float

private_rss: float

* Provides both max RAM and GPU RAM share rss: oat
utilization of a given computational task.
gpu_tracker.tracker.Tracker gpu_tracker.tracker.MaxHAM

e Designed for Linux, but works on Windows |neam vasau wese
and MaCOS. max_gpu_ram: MaxGPURAM :z::z:_;};:?cny:rloat

compute_time: ComputeTime

° sleep_time: float main: RSSValues
L]
C LI Exa l I I p I e . join_timeout: float descendents: RSSValues
% gpu-tracker -e 'bash example-script.sh' --tu=seconds --gru=megabytes --ru=megabytes kill_if_join_fails: bool combined: RSSValues
Resource tracking complete. Process completed with status code: 0 n_join_attempts: int
Max RAM: Max GPU RAM: process_id: int
Unit: megabytes Unit: megabytes
System capacity: 67254.166 Main: 0.0 _init_{ gpu_tracker.tracker.MaxGPURAM
System: 2458.182 Descsndednts: 314.0 self, sleep_time: float = 1.0, ram_unit: str = 'gigabytes’, gpu_ram_unit: str = 'gigabytes’, unit: str
Main: Combined: 314.0 ) o L e i . _ ’
Total RSS: 3.072 Compute time: tlfna._u_n?t. str.—.hours, n_]om_attempts_. |nt =5, Jmn_nmsnut.-ﬂoat =10.0, main: float
Private RSS: 0.373 Unit: seconds kill_if_join_fails: bool = False, process_id: int | None = None): descendents: float
Shared RSS: 2.699 Time: 3.316 —enter__(self): combined: float
Descendents: __exit__(self):
Total RSS: 830.271 glan(sa"]:
Private RSS: 708.19 .
Shared RSS: 122.081 m;isal('s},-sm - gpu_tracker.tracker.ComputeTime
Combined: — o . — )
Total RSS: 831.537 to_json(self) -> dict[str, dict]: gnlt: str
Private RSS: 708.563 time: float

Shared RSS: 122.974
Erik D. Huckvale and Hunter N.B. Moseley. "gpu_tracker: Python package for tracking and profiling GPU utilization in both desktop and high-performance computing environments" arXiv arXiv:2404.01473 (2024).



Conclusions and Future Goals

 We have developed a high-quality benchmark dataset for building
metabolic pathway prediction models.

* We have developed the most robust models so far for metabolic
pathway prediction.

* We are confident that achieving an average MCC > 0.9 will produce
predicted metabolic pathway annotations useful for pathway
enrichment analysis.

* Along the way we created a useful tool for profiling GPU utilization
of HPC jobs, especially involving machine learning models.
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kegg pull: a Software Package for the RESTful
Access and Pulling from KEGG

* Promote the FAIR (Findable, Accessible, Interoperable, and Reusable)
guiding principles of data stewardship with respect to KEGG.

* Improves on the accessibility, interoperability, and reusability of the KEGG API.

* Makes the utilities of the KEGG API accessible to Python programmers
through an application programming interface (API).

* Makes these utilities accessible to command line users either for
shellbash scripting or for executing one-time commands without
needing to write any script at all.

Usage:
kegg_pull -h | —help Show this help message.
kegg_pull -v | ——version Displays the package version.
kegg_pull —-—=full-help Show the help message of all sub commands.
kegg_pull pull ... Pull, separate, and store an arbitrary number of KEGG entries to the local file system.
kegg_pull entry-ids ... Obtain a list of KEGG entry IDs.
kegg_pull rest ... Executes one of the KEGG REST API operations.

Erik Huckvale and Hunter N.B. Moseley. "kegg pull: a Software Package for the RESTful Access and Pulling from The Kyoto Encyclopedia of Gene and Genomes" BMC Bioinformatics 24, 78 (2023).



kegg pull Improvements Over Prior Packages

1. Provides a command line interface.
2. Provides sleep and pull redundancy to handle KEGG’s blacklisting.
Sleep Time 10.0
e | S L LT
94.68 94.89 96.78 99.78 100.0 100.0 100.0
Pull Time 12.99 16.03 14.69 10.82 8.51 8.44 8.7

Number of minutes spent attempting to pull all the entries in the KO KEGG database. Percent success is the percentage of the entries in the KO
database that were successfully pulled while the others failed. Difference in pull time and percent success varies by the --sleep-time option on
the kegg_pull CLI. All other options remained the same, including the use of multiprocessing. Values were collected on a 12 core

(hyperthreaded) machine using 12 processes.

3. Provides multiprocessing and URL construction speed
improvements. Database

Name Sleep Time 5 Sleep Time 20 Sleep Time 5 Sleep Time 20

Database Name Multi-process Pull Single Process Number Of Seconds Seconds Seconds Seconds
Time Pull Time Entries Percent Pull Time Percent Pull Percent Pull Percent Pull
Success Success Time Success Time Success Time
0.1 1.05 558
y 98.69 1.34 100.0 1.59 100.0 0.06 100.0 0.07
98.75 1.6 100.0 1.67 100.0 0.11 100.0 0.09

' | Module |

Compound 6.4 73.62 19,004 Pathway
. KO | 8.32 74.0 25,458 99.24 63.62 100.0 61.36 100.0 6.77 100.0 7.21
The amount of time to pull and save all the entries of a given database on a single process (one core) compared to pulling “ 99.39 83.91 100.0 90.4 100.0 8.42 100.0 9.22

across multiple processes (multiple cores). The above values result from running ke ull on a 12 hyper-threaded core
e ( g ) N L The amount of time (minutes) to pull all the entries from a given database and the success percentage when pulling one entry
at a time (with the --force-single-entry flag set) compared to pulling ten entries (maximum allowed by KEGG) per request. Each

machine using 12 processes for multiprocessing and one process for single-processing. The sleep time and all other

tions for each were also constant. Files were saved in a regular directory. X : 4
of these are compared to a lower sleep time vs. a higher sleep time. Results were collected on a 12 (hyperthreaded) core

machine on 12 processes with all other options consistent.
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