NOVEL DEEP LEARNING MODELS AND TECHNIQUES FOR EFFECTIVE AND EFFICIENT HANDLING OF MULTIPLE DATA MODALITIES

Qiang Shawn Cheng Institute for Biomedical Informatics Department of Internal Medicine Department of Computer Science

BRIEF OUTLINE

Four Topics

- A New Technique for Tabular Data Learning Problems
- A New Deep Learning Model for Long-Term Time Series Forecasting
- A New Diversity-Aware Tensor-Formulated Multi-View Clustering Technique
- A New Deep Learning Model for Time Series Classification
- (Optional) An Unsupervised Circadian Phase Inference Technique for Multi-Omics Data with Applications to Neurodegenerative Diseases

ACKNOWLEDGEMENT AND DISCLAIMER

The presented contents are based on joint work with Md Atik Ahamed, Aram Ansary Ogholbake, Dr. Peng, et al.

The research is partially supported by NSF under Grant IIS 2327113 and ITE 2433190, and the NIH under Grants R21AG070909, P30AG072946, and R01HD101508-01. I declare that the results presented in this talk do not pose any potential conflicts of interest with any funding agencies or collaborators involved in this research. The findings and conclusions are based on impartial and objective analysis, and no external influences have compromised the integrity of this work.

1ST TOPIC: A NEW DEEP LEARNING APPROACH FOR HANDLING TABULAR DATA

Motivation

- Importance of tabular data across domains
 - Structured format; mixed types; predominant in various domains
- Challenges with existing deep learning models for tabular data
 - Classical methods (MLP, XGBoost, LR): accuracy
 - Deep learning models (TabNet, CNN-based, DCN): accuracy
 - Transformer-based models (AutoInt, TabTransformer, FT-former, TransTab): efficiency, accessibility, and scalability
 - Self-Supervised Learning models (VIME, SCARF): accuracy
- Need for an accurate, efficient, scalable approach
 - Capturing correlations across features and samples
 - Also, existing models not suited to feature incremental learning

NEW MODEL: MAMBATAB

Novel approach leveraging structured state-space model (SSM)

 $dh(t)/dt = A h(t) + B u(t), \quad x(t) = C h(t),$

Based on Mamba, an SSM variant

 $h_k = \overline{A} h_{k-1} + \overline{B} u_k, \quad x_k = C h_k, \quad \overline{A} = \exp(\Delta A), \quad \overline{B} = (\Delta A)^{-1} (\exp(\Delta A) - I) \Delta B.$

- B, C, Δ : time varying (dependent on input); A: diagonal
- Advantages:
 - Small model size and number of parameters
 - Minimal preprocessing
 - High performance in accuracy
 - Linear complexity and linear scalability

MambaTab: A plug-and-play model for learning tabular data. MA Ahamed, Q Cheng, IEEE MIPR 2024. Code available at GitHub.

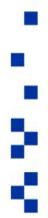
METHOD - DATA PREPROCESSING

Simple, minimal preprocessing

- Normalization and imputation
 - Min-max scaling



6

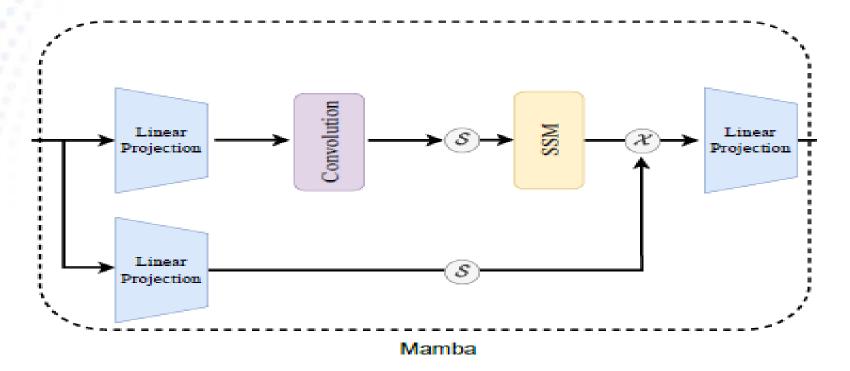


METHOD - EMBEDDING REPRESENTATION LEARNING

- Encoding categorical/Binary variables into numerical var. automatically
 Each sample encoded into a token in a latent space
- Fully connected layer to learn embedded representations
- Enabling meaningful representations and incremental learning
- Layer normalization applied

METHOD - CASCADING MAMBA BLOCKS

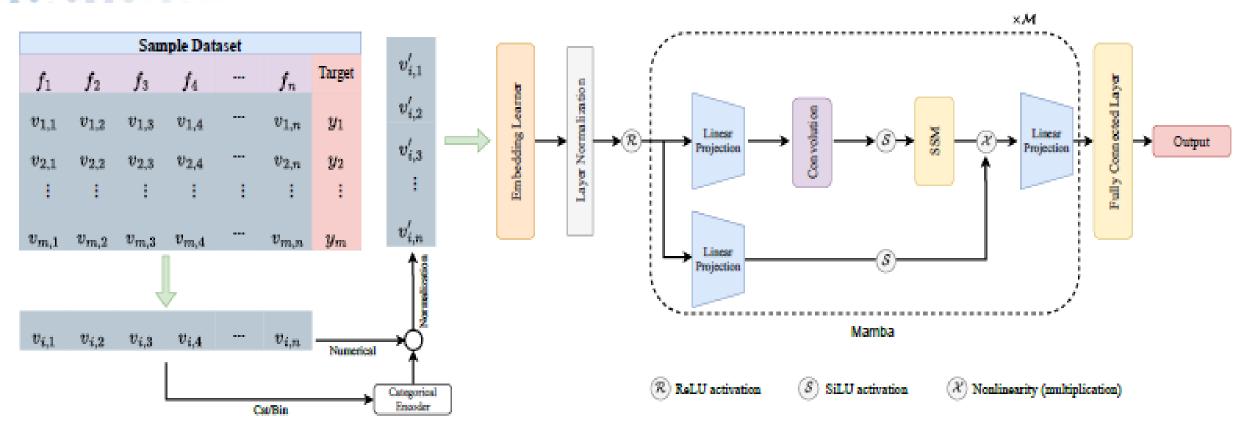
- Mamba block maps features into a feature space of the same dim.
- Utilizes linear projections, 1D causal convolution, SiLU activation, SSMs



- Context-dependent feature extraction and reasoning for long-range dependencies
- Cascading multiple Mamba blocks to seek important information w. various contexts

METHOD - OUTPUT PREDICTION

- Fully connected layer maps Mamba block outputs to predictions
 - Sigmoid activation for probability scores



EXPERIMENTAL SETUP

Datasets: 8 diverse public tabular datasets

Dataset Name	Abbreviation	Datapoints	Train	Val	Test	Positive
Credit-g	CG	1000	700	100	200	0.70
Credit-approval	CA	690	483	69	138	0.56
Dresses-sales	DS	500	350	50	100	0.42
Adult	AD	48842	34189	4884	9769	0.24
Cylinder-bands	CB	540	378	54	108	0.58
Blastchar	BL	7043	4930	704	1409	0.27
Insurance-co	IO	5822	4075	582	1165	0.06
Income-1995	IC	32561	22792	3256	6513	0.24

- Baselines: 12 SOTA models LR, XGBoost, MLP, SNN, TabNet, DCN, AutoInt, TabTransformer, FT-Transformer, VIME, SCARF, TransTab
- Settings: Vanilla supervised learning, feature incremental learning
- Metrics: AUROC

RESULTS - VANILLA SUPERVISED LEARNING

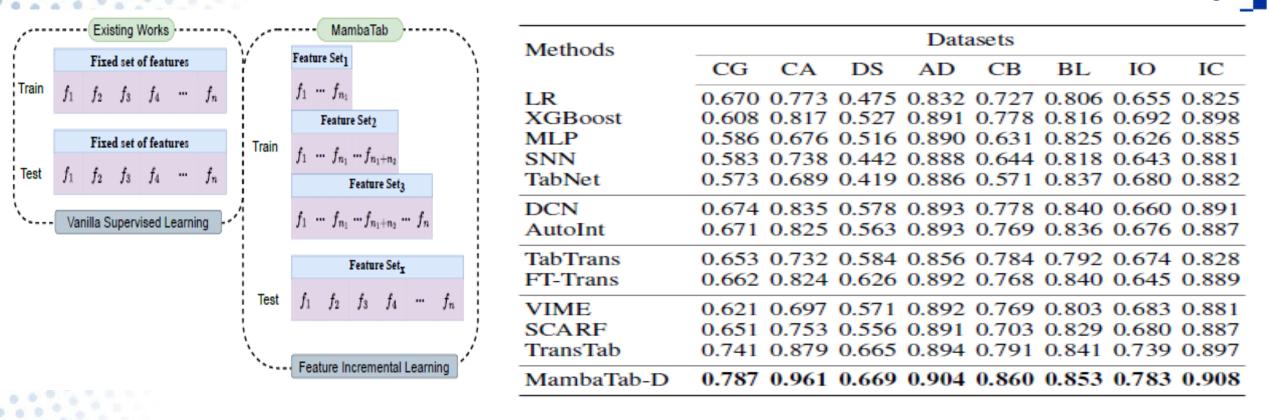
AUROC results on 8 datasets (averaged over 10 runs)

Methods	Datasets												
	CG	CA	DS	AD	CB	BL	IO	IC					
LR	0.720	0.836	0.557	0.851	0.748	0.801	0.769	0.860					
XGBoost	0.726	0.895	0.587	0.912	0.892	0.821	0.758	0.925					
MLP	0.643	0.832	0.568	0.904	0.613	0.832	0.779	0.893					
SNN	0.641	0.880	0.540	0.902	0.621	0.834	0.794	0.892					
TabNet	0.585	0.800	0.478	0.904	0.680	0.819	0.742	0.896					
DCN	0.739	0.870	0.674	0.913	0.848	0.840	0.768	0.915					
AutoInt	0.744	0.866	0.672	0.913	0.808	0.844	0.762	0.916					
TabTrans	0.718	0.860	0.648	0.914	0.855	0.820	0.794	0.882					
FT-Trans	0.739	0.859	0.657	<u>0.913</u>	0.862	0.841	0.793	0.915					
VIME	0.735	0.852	0.485	0.912	0.769	0.837	0.786	0.908					
SCARF	0.733	0.861	0.663	0.911	0.719	0.833	0.758	0.905					
TransTab	0.768	0.881	0.643	0.907	0.851	0.845	0.822	0.919					
MambaTab-D	0.771						0.785						
MambaTab-T	0.801	0.963	0.681	0.914	0.896	0.854	0.812	0.920					

- MambaTab outperforms baselines on majority datasets
- Hyperparameter tuning (MambaTab-T) improves upon default model

RESULTS - FEATURE INCREMENTAL LEARNING

AUROC results under feature incremental setting



 MambaTab outperforms TransTab and other basdelines with default hyperparameters on all datasets

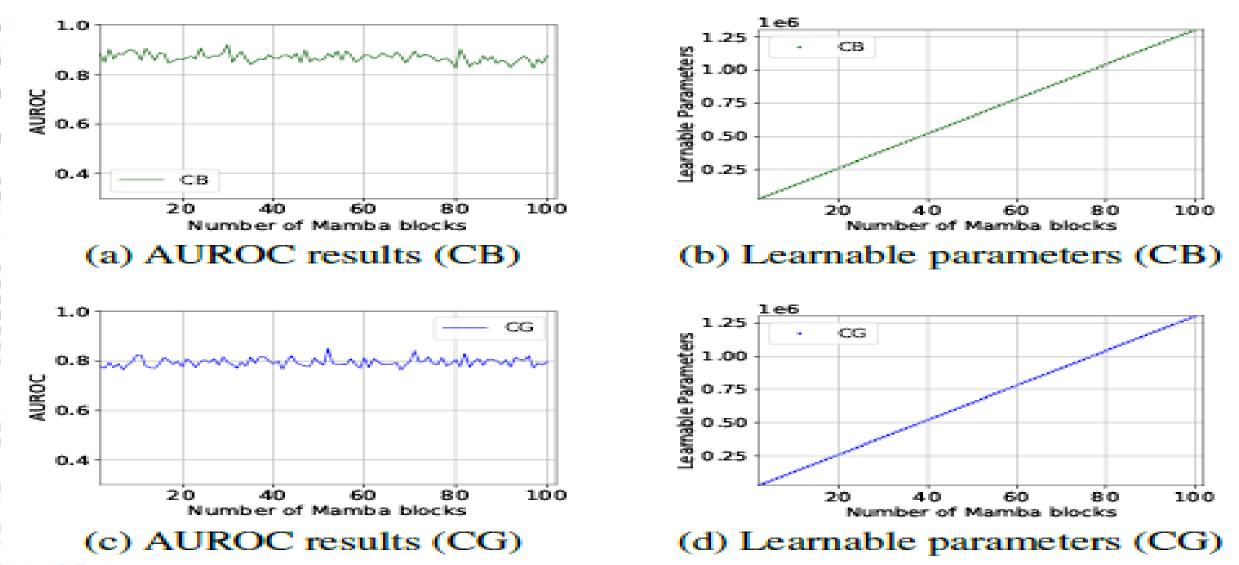
ANALYSIS - PARAMETER EFFICIENCY

Comparing learnable parameters of MambaTab vs Transformers

Methods	Datasets												
methods	CG	CA	DS	AD	CB	BL	IO	IC					
TabTrans	2.7M	1.2M	2.0M	1.2M	6.5M	3.4M	87.0M	1.0M					
FT-Trans	176K	176K	179K	178K	203K	176K	193K	177K					
TransTab	4.2M	4.2M	4.2M	4.2M	4.2M	4.2M	4.2M	4.2M					
MambaTab-D	13K	13K	13K	13K	14K	13K	15K	13K					
MambaTab-T	50K	38K	5K	255K	30K	11K	13K	10K					

 MambaTab uses <1% parameters of TransTab while achieving better performance

ANALYSIS - SCALABILITY AND ABLATION STUDY



- Extensive hyper-parameter sensitivity study and structural ablations study
 - More in the paper MambaTab Not shown here

Kentucky.

14

BRIEF CONCLUSION OF THE 1ST TOPIC

- MambaTab: out-of-the-box, plug-and-play model for tabular data
- Simple architecture, minimal preprocessing, superior performance, parameter-efficient
- We also obtained superior results for SSL, not shown here
- Holds promise for enabling wider practical applications across domains

2ND TOPIC – A DEEP LEARNING MODEL FOR TIME SERIES LONG-TERM FORECASTING

- Importance of long-term time-series forecasting (LTSF) across domains
- Challenges in LTSF
 - capturing long-term dependencies
 - scalability
 - computational efficiency
- Limitations of existing approaches
 - Non-Transformer-based: Classical models (ARIMA, RNN, GARCH), Linear models – MLP (DLinear, RLinear, TiDE), CNN (TimesNet, Scinet) linear complexity and scalability, may not capture LT dependency, accuracy
 - Transformer-based SL models (iTransformer, PatchTST, CrossFormer): can capture LT dependency, SOTA accuracy, quadratic complexity and not scalable well
 - SSL Representation Learning: typically Transformer-based (TST, TS-TCC): not as competitive as SL models in accuracy

NEW MODEL: TIMEMACHINE

- Novel approach leveraging structured state-space models (SSMs), Mamba
- Exploiting unique properties of time series data to produce salient contextual cues at multi-scales
- Innovative integrated quadruple-Mamba architecture
 - Key Innovations
 - First to leverage purely SSM modules for context-aware LTSF with linear scalability and small memory footprints
 - Unifies handling of channel-mixing and channel-independence situations
 - Selects contents for prediction incorporating global and local contexts at different scales

TimeMachine: A Time Series is Worth 4 Mambas for Long-term Forecasting. MA Ahamed, Q Cheng, ECAI, 2024. Code Available at GitHub.

METHOD - DATA PREPROCESSING AND EMBEDDED REPRESENTATIONS

Preprocessing

- Normalization options: RevIN or Z-score
- Channel mixing vs. channel independence handling

Embedded Representation

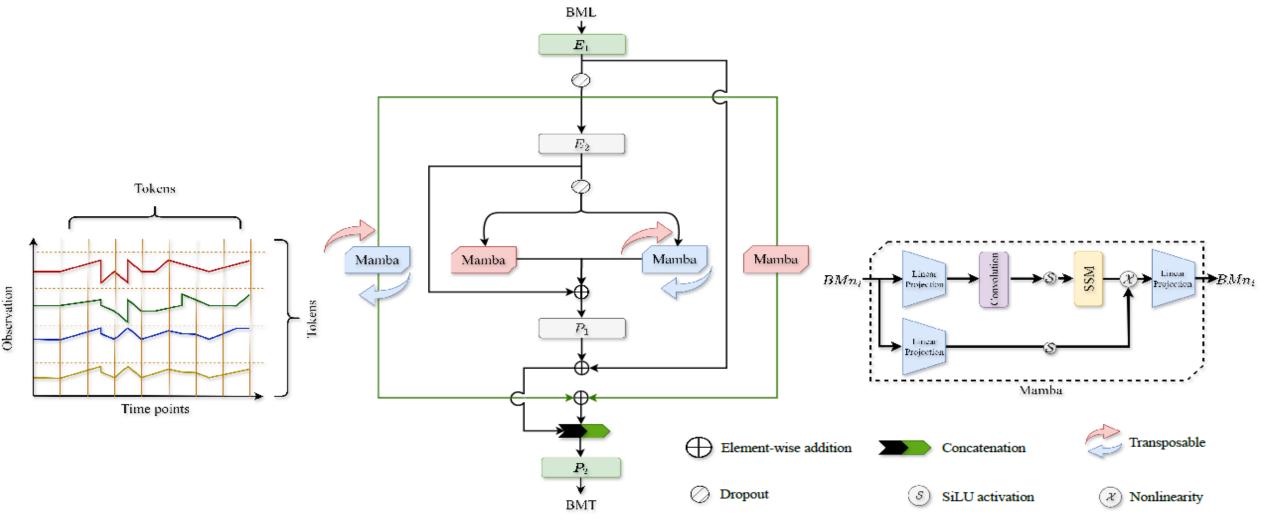
- Two-stage embedded representations using MLPs
- Enables handling variable input sequence lengths

METHOD - INTEGRATED QUADRUPLE MAMBAS

- Two pairs of Mambas at 2 embedding levels
- Capture long-term dependencies and provide local contexts
- Handling channel-mixing and channel-independence cases
- Transposable Mambas for unified architecture

METHOD - OUTPUT PROJECTION AND ARCHITECTURE

- Two-stage output projection using MLPs
- Residual connections for stabilization and overfitting reduction



EXPERIMENTAL SETUP

Datasets: 7 standard benchmark datasets

Dataset (\mathcal{D})	Channels (M)	Time Points	Frequency
Weather	21	52696	10 Minutes
Traffic	862	17544	Hourly
Electricity	321	26304	Hourly
ETTh1	7	17420	Hourly
ETTh2	7	17420	Hourly
ETTm1	7	69680	15 Minutes
ETTm2	7	69680	15 Minutes

- Baselines: 11 SOTA models
- Metrics: MSE and MAE

Kentucky.

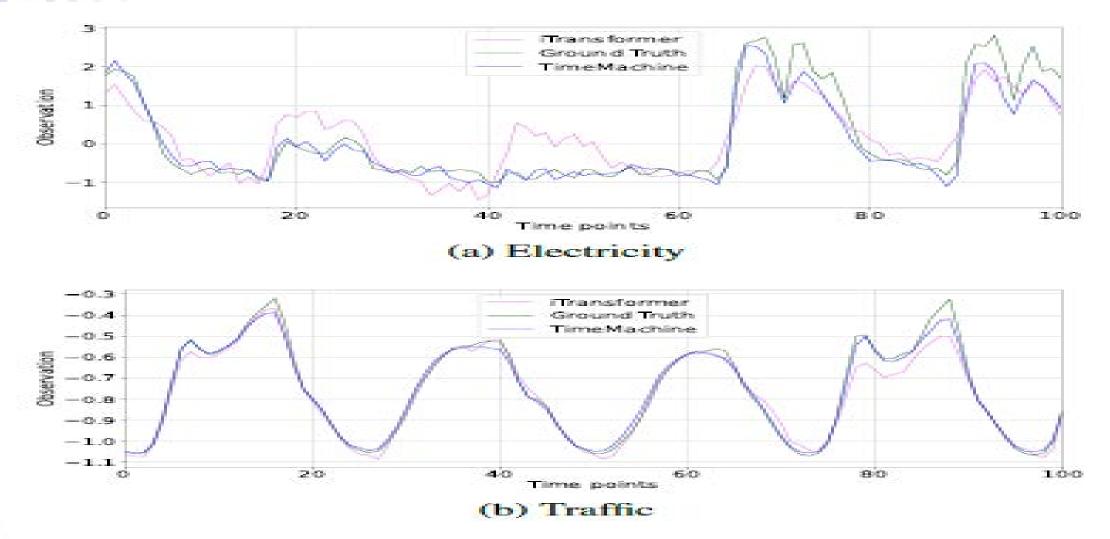
RESULTS - QUANTITATIVE

Met	nods→	TimeN	fachine	iTrans	former	RLi	near	Patch	nTST	Cross	ormer	Til	DE	Time	sNet	DLi	near	SCI	Net	FEDf	ormer	Statio	onary	Autof	former
\mathcal{D}	Т	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Weather		0.211 0.256	0.208 0.250 0.290 0.343	0.221 0.278	0.254 0.296	0.240 0.292	0.271 0.307	0.225 0.278	0.259 0.297	0.206 0.272	0.277 0.335	0.242 0.287	0.298 0.335	0.219 0.280	0.261 0.306	0.237 0.283	0.296 0.335	0.261 0.309	0.340 0.378	0.276 0.339	0.336 0.380	0.245 0.321	0.285 0.338	0.307 0.359	0.367 0.395
Traffic	192 336	0.417 0.433	0.268 0.274 0.281 0.300	0.417 0.433	$\tfrac{0.276}{0.283}$	0.601 0.609	0.366 0.369	0.540 0.551	0.354 0.358	$\frac{0.530}{0.558}$	0.293 0.305	0.756 0.762	0.474 0.477	0.617 0.629	0.336 0.336	0.598 0.605	0.370 0.373	0.789 0.797	0.505 0.508	0.604 0.621	0.373 0.383	0.613 0.618	0.340 0.328	0.616 0.622	0.382 0.337
Electricity	96 192 336 720	0.158 0.172	0.236 0.250 0.268 0.298	0.162 0.178	0.253	0.201 0.215	0.283 0.298	0.199 0.215	0.289 0.305	0.231 0.246	0.322 0.337	0.236 0.249	0.330 0.344	0.184 0.198	0.289 0.300	0.196 0.209	0.285 0.301	0.257 0.269	0.355 0.369	0.201 0.214	0.315 0.329	0.182 0.200	0.286 0.304	0.222 0.231	0.334 0.338
ETTh1	192	0.415 0.429	0.387 0.416 0.421 0.453	0.441 0.487	0.436 0.458	0.437 0.479	0.424 0.446	0.460 0.501	0.445 0.466	0.471 0.570	0.474 0.546	0.525 0.565	0.492 0.515	0.436 0.491	0.429 0.469	0.437 0.481	0.432 0.459	0.719 0.778	0.631 0.659	0.420 0.459	0.448 0.465	0.534 0.588	0.504 0.535	0.500 0.521	0.482 0.496
ETTh2	96 192 336 720	0.349 0.340	0.334 0.381 0.381 0.433	0.380 0.428	0.400 0.432	0.374 0.415	0.390 0.426	0.388 0.426	0.400 0.433	0.877 1.043	0.656 0.731	0.528 0.643	0.509 0.571	0.402 0.452	0.414 0.452	0.477 0.594	0.476 0.541	0.860 1.000	0.689 0.744	0.429 0.496	0.439 0.487	0.512 0.552	0.493 0.551	0.456 0.482	0.452 0.486
ETTm1	192	0.357 0.379	0.355 0.378 0.399 0.436	0.377 0.426	0.391 0.420	0.391 0.424	0.392 0.415	0.367 0.399	0.385 0.410	0.450 0.532	0.451 0.515	0.398 0.428	0.404 0.425	0.374 0.410	0.387 0.411	0.380 0.413	0.389 0.413	0.439 0.490	0.450 0.485	0.426 0.445	0.441 0.459	0.459 0.495	0.444 0.464	0.553 0.621	0.496 0.537
EITm2	96 192 336 720	0.239 0.287	0.256 0.299 0.332 0.385	0.250 0.311	0.309 0.348	0.246 0.307	0.304 0.342	$\frac{0.241}{0.305}$	0.302 0.343	0.414 0.597	0.492 0.542	0.290 0.377	0.364 0.422	0.249 0.321	0.309 0.351	0.284 0.369	0.362 0.427	0.399 0.637	0.445 0.591	0.269 0.325	0.328 0.366	0.280 0.334	0.339 0.361	0.281 0.339	0.340 0.372

- Superior performance in almost all cases
- Effectiveness in handling varying number of channels and look-back windows²²

RESULTS - QUALITATIVE

Visually comparing TimeMachine with best-performing baselines

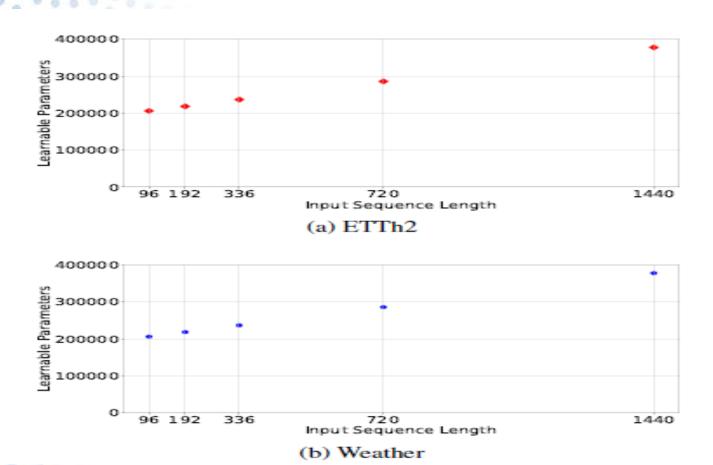


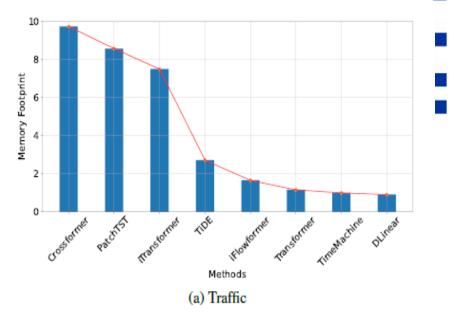
• TimeMachine aligns well with ground truth

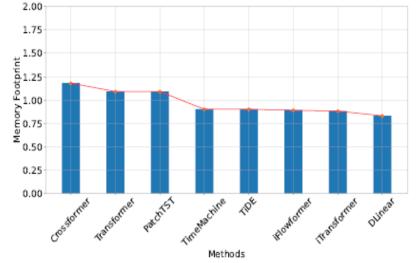
23

ANALYSIS - MEMORY FOOTPRINT AND SCALABILITY

Comparison of memory footprints with baselines (Traffic: 862 channels; Weather: 21 channels) Linear scalability in terms of learnable parameters

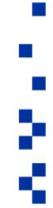






BRIEF CONCLUSION OF TOPIC 2

- TimeMachine: novel deep learning model for LTSF
- Superior performance, linear scalability, small memory footprints
- Potential for future exploration in self-supervised learning setting



TOPIC 3 - CROSS-VIEW DIVERSITY EMBEDDED CONSENSUS LEARNING FOR MULTI-VIEW CLUSTERING

- Importance of multi-view clustering (MVC)
 - Clustering is fundamental;
 - Data from multiple sources often need multi-view clustering
- Challenges in MVC
 - How to find consensus information from multiple views
 - Diversity not properly embedded redundant information across views often emphasized
 - How to simultaneously learn consensus and diversity information
- Limitations of existing methods
 - Existing methods follow 2 steps: affinity matrix; spectral clustering
 - for affinity matrix, low-rank tensor recovery: tensor nuclear norm
 - Diversity is not incorporated
 - High-order neighbor information is rarely considered

RELATED WORK

Two main categories of MVC methods

- Spectral clustering (SPC)-based subspace clustering: Markov random walk
 - RMSC: transition prob. matrix for each view, common low-rank stochastic matrix by combining w. Markov mixture
 - MVC: low-rank tensor recovery from tensor nuclear norm
 - ETLMSC: essential low-rank tensor
- Graph-based subspace clustering: affinity matrix from similarity matrix
 - Focus on graph-based methods using similarity matrix

ETLMSC:

- Multi-view data: $\{\mathbf{X}^{(v)}\}_{v=1}^V$ where $\mathbf{X}^{(v)} \in \mathbb{R}^{d_v \times n}$
- Trans. Prob. Matrix-based tensor: $\mathcal{P} \in \mathbb{R}^{n \times n \times V}$

 $\min_{\mathcal{Z}, \mathcal{E} \in \mathbb{R}^{n \times n \times V}} \|\mathcal{Z}\|_{\circledast} + \lambda \|\mathcal{E}\|_{2,1} \quad s.t. \quad \mathcal{P} = \mathcal{Z} + \mathcal{E},$



27

KEY INNOVATIONS

Recovering low-rank essential tensor from cross-order neighbor graph tensor

- Embedding auto-adjusted weighting vector for cross-view diversity and consensus
- Efficient optimization algorithm with convergence guarantee
- Superior performance over baselines

NEW METHOD: CCL-MVC

- Constructing cross-order neighbor tensor
 - Higher-order neighbor relationships
 - Fine-grained probability tensor with local structure preservation

$$\mathcal{P}_{K}^{(v)} = \sum_{k=1}^{K} \frac{(\mathcal{P}^{(v)})^{k} + ((\mathcal{P}^{(v)})^{k})^{T}}{2}$$

• Recovering low-rank essential tensor: log-based rank and sparsity approx.

$$\min_{\mathcal{Z},\mathcal{E}} \|\mathcal{Z}\|_{\mathbb{R}} + \lambda \|\mathcal{E}\|_{\mathbb{S}} \quad s.t. \quad \mathcal{P}_K = \mathcal{Z} + \mathcal{E}$$

$$\|\mathcal{Z}\|_{\mathbb{R}} = \sum_{v=1}^{V} \sum_{i=1}^{n} \log(1 + \boldsymbol{\sigma}_i(\hat{\mathcal{Z}}^{(v)}))$$

 $\|\mathcal{E}\|_{\circledast} = \sum_{j=1}^{n} \log(1 + (\sum_{i=1}^{n} \sum_{v=1}^{V} \mathcal{E}_{ijv}^{2})^{1/2})$

C Peng, Y Liu, K Kang, Y Chen, X Wu, A Cheng, Z Kang, C Chen, and Q Cheng. Hyperspectral image denoising using nonconvex local low-rank and sparse separation with spatial-spectral total variation regularization. IEEE Transactions on Geoscience and Remote Sensing, 60:1–17, 2022.

C Peng, Z Kang, H Li, and Q Cheng. Subspace clustering using log-determinant rank approximation. ACM KDD, pp. 925–934, University of 29 29 Kentucky.

NEW METHOD: CCL-MVC

Constructing consensus representation matrix

$$\min_{\mathcal{Z},\mathcal{E},w} \|\mathcal{Z}\|_{\mathbb{B}} + \lambda \|\mathcal{E}\|_{\mathbb{S}} + \alpha \sum_{v} \|\mathbf{Z}_{0} - w_{v}\mathcal{Z}^{(v)}\|_{F}^{2}$$

s.t. $\mathcal{P}_{K} = \mathcal{Z} + \mathcal{E}, w_{v} \ge 0, \sum_{v} w_{v} = 1,$

Z₀: consensus affinity matrix fusing cross-view neighbor graphs W_{V} : auto adjusted weights for the *v*-th view

- Twin learning for similarity and clustering: A unified kernel approach. Z Kang, C Peng, Q Cheng, AAAI, 2017.

- Kernel-driven similarity learning. Z Kang, C Peng, Q Cheng, Neurocomputing. 2017; 210-219.

CCL-MVC FORMULATION

Incorporating Diversity Representation Matrix Learning

- Auto-adjusted weighting vector for cross-view diversity
- Embedding fusion into the model

$$\min_{\substack{\mathcal{P}_{K}=\mathcal{Z}+\mathcal{E}, w \geq 0, \sum_{i} w_{i}=1 \\ +\alpha \sum_{v=1}^{V} \|\mathbf{Z}_{0}-w_{v}\mathcal{Z}^{(v)}\|_{F}^{2} + \beta \sum_{i,j=1}^{V} w_{i}w_{j} \operatorname{Tr}((\mathcal{Z}^{(i)})^{T} \mathcal{Z}^{(j)}),$$

Cross-View Diversity Embedded Consensus Learning for Multi-View Clustering. C Peng, K Zhang, Y Chen, C Chen, Q Cheng. IJCAI 2024.

OPTIMIZATION ALGORITHM

Alternating optimization with ALM Sub-problems and solutions for each variable

• Optimization of Z:

• Optimization of Q:

$$\min_{\mathcal{Z}} \alpha \sum_{v} \| \mathbb{Z}_{0} - w_{v} \mathcal{Z}^{(v)} \|_{F}^{2} + \beta \sum_{i,j} w_{i} w_{j} \operatorname{Tr}((\mathcal{Z}^{(i)})^{T} \mathcal{Z}^{(j)}) + \frac{\rho}{2} \| \mathcal{Q} - \mathcal{Z} + \mathcal{Y}_{1} / \rho \|_{F}^{2} + \frac{\rho}{2} \| \mathcal{P}_{K} - \mathcal{Z} - \mathcal{E} + \mathcal{Y}_{2} / \rho \|_{F}^{2}.$$

$$\min_{\mathcal{Q}} \|\mathcal{Q}\|_{\mathbb{B}} + \frac{\rho}{2} \|\mathcal{Q} - \mathcal{Z} + \mathcal{Y}_1/\rho\|_F^2.$$

Optimization of *E*:

$$\min_{\mathcal{E}} \lambda \|\mathcal{E}\|_{\text{(S)}} + \frac{\rho}{2} \|\mathcal{P}_{K} - \mathcal{Z} - \mathcal{E} + \mathcal{Y}_{2}/\rho\|_{F}^{2}$$

- Optimization of Zo, w: straightforward $\alpha \sum_v \|Z_0 w_v \mathcal{Z}^{(v)}\|_F^2$
- Updating of Y_1 , Y_2 , and ρ : standard steps

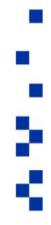
CONVERGENCE ANALYSIS

Theorem 1: Boundedness of variable sequences

Theorem 1. Let t in the superscript denote the iteration number. Under assumptions that $\sum \frac{1}{\rho^t} < \infty$ and $\sum \frac{\rho^{t+1}}{(\rho^t)^2} < \infty$, and given a bounded initialization of the variables, the variable sequences $\{\mathcal{Z}^t\}, \{\mathcal{E}^t\}, \{\mathcal{Q}^t\}, \{\mathcal{Z}_0^t\}, \{w^t\}, \{\mathcal{Y}_1^t\}$, and $\{\mathcal{Y}_2^t\}$ generated by our optimization algorithm are bounded.

Theorem 2: Convergence to a stationary point

Theorem 2. Let $\{\mathcal{Z}^t, \mathcal{E}^t, \mathcal{Q}^t, Z_0^t, w^t, \mathcal{Y}_1^t, \mathcal{Y}_2^t\}$ be a sequence generated by our algorithm. Under assumptions that $\sum \frac{1}{\rho^t} < \infty$, $\sum \frac{\rho^{t+1}}{(\rho^t)^2} < \infty$, $\rho^t(\mathcal{Q}^{t+1} - \mathcal{Q}^t) \to 0$, and $\rho^t(\mathcal{E}^{t+1} - \mathcal{E}^t) \to 0$, the sequence $\{\mathcal{Z}^t, \mathcal{E}^t, \mathcal{Q}^t, Z_0^t, w^t, \mathcal{Y}_1^t, \mathcal{Y}_2^t\}$ has at least one accumulation point. For any accumulation point, denoted as $\{\mathcal{Z}^*, \mathcal{E}^*, \mathcal{Q}^*, Z_0^*, w^*, \mathcal{Y}_1^*, \mathcal{Y}_2^*\}, \{\mathcal{Z}^*, \mathcal{E}^*, \mathcal{Q}^*, Z_0^*, w^*\}$ is a stationary point of the optimization problem in Eq. (5).



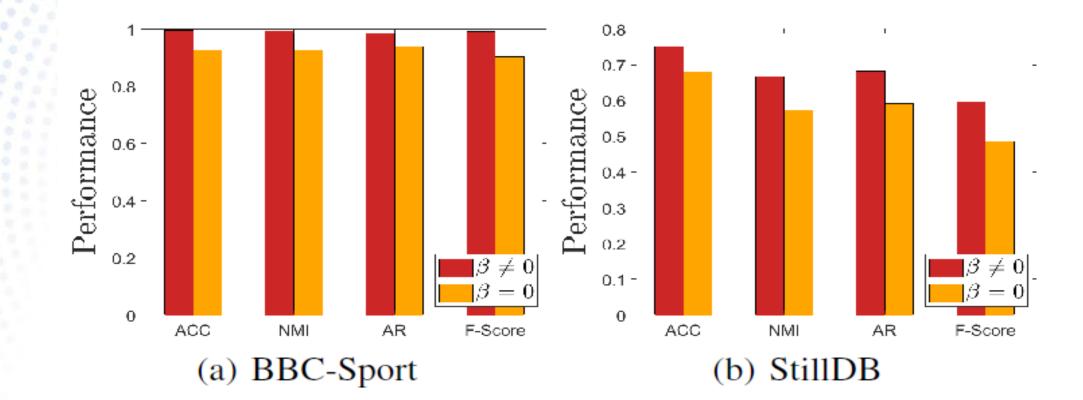
EXPERIMENTAL SETUP

- Datasets: 6 standard benchmark datasets
 - BBC-4view, BBC-Sport, Flowers, UCI-3view, StillDB, MITindoor,
- Evaluation metrics: 4 metrics
 - clustering accuracy (ACC), normalized mutual information (NMI), adjusted rand index (AR), F-Score
- Parameter settings
- Comparing our method with 17 SOTA baselines
 - CCL-MVC: Cross-view diversity embedded Consensus Learning for Multi-View Clustering
 - Superiority and stability

Datasets		BBC	-4view			BBC	Sport		Flowers					
Methods	ACC	NMI	AR	F-Score	ACC	NMI	AR	F-Score	ACC	NMI	AR	F-Score		
AWP	0.904 ± 0.000	0.760 ± 0.000	0.797 ± 0.000	0.845 ± 0.000	0.809 ± 0.000	0.723 ± 0.000	0.726 ± 0.000	0.796 ± 0.000	$0.435 {\pm} 0.000$	0.430 ± 0.000	$0.246 {\pm} 0.000$	0.292 ± 0.000		
MvDSCN	0.495 ± 0.019	0.247 ± 0.022	0.224 ± 0.023	0.437 ± 0.015	0.931 ± 0.001	0.935 ± 0.000	0.909 ± 0.001	$0.860 {\pm} 0.000$	0.276 ± 0.012	0.285 ± 0.012	0.108 ± 0.010	0.182 ± 0.008		
OMVFC-LICAG	0.718 ± 0.000	0.586 ± 0.000	0.584 ± 0.000	0.688 ± 0.000	0.724 ± 0.000	0.571 ± 0.000	0.397 ± 0.000	$0.627 {\pm} 0.000$	0.397 ± 0.000	0.404 ± 0.000	$0.208 {\pm} 0.000$	0.259 ± 0.000		
MLAN	0.853 ± 0.007	0.698 ± 0.010	0.716 ± 0.005	0.783 ± 0.004	0.721 ± 0.000	0.779 ± 0.000	0.591 ± 0.000	$0.714 {\pm} 0.000$	0.501 ± 0.008	0.532 ± 0.003	$0.331 {\pm} 0.010$	0.373 ± 0.009		
GMC		0.563 ± 0.000		0.633 ± 0.000	0.807 ± 0.000	$0.760 {\pm} 0.000$	$0.722 {\pm} 0.000$	$0.794 {\pm} 0.000$	0.177 ± 0.000	0.247 ± 0.000	$0.020 {\pm} 0.000$	0.125 ± 0.000		
UOMvSC	0.391 ± 0.000	0.170 ± 0.000	0.105 ± 0.000	0.267 ± 0.000	0.529 ± 0.000	0.302 ± 0.000	0.209 ± 0.000	0.415 ± 0.000	0.507 ± 0.000	0.508 ± 0.000	0.313 ± 0.000	0.355 ± 0.000		
EOMSC-CA		0.090 ± 0.000	0.090 ± 0.000	0.365 ± 0.000		0.083 ± 0.000	0.058 ± 0.000	0.375 ± 0.000	0.374 ± 0.000	0.418 ± 0.000	0.221 ± 0.000	0.281 ± 0.000		
LMSC	0.883 ± 0.000	0.699 ± 0.000	0.746 ± 0.000	0.806 ± 0.000	0.847 ± 0.003	0.739 ± 0.001	0.749 ± 0.001	$0.810 {\pm} 0.001$	0.442 ± 0.009	0.444 ± 0.009	0.275 ± 0.007	0.318 ± 0.012		
MCLES	0.819 ± 0.000	0.637 ± 0.000	0.662 ± 0.000	0.742 ± 0.000	0.921 ± 0.000	0.802 ± 0.000	0.795 ± 0.000	0.945 ± 0.000	0.469 ± 0.000		0.337 ± 0.000			
FPMVS-CAG	0.323 ± 0.000	0.030 ± 0.000	0.037 ± 0.000	0.276 ± 0.000	0.406 ± 0.000	0.106 ± 0.000	0.103 ± 0.000	0.304 ± 0.000	0.272 ± 0.000	0.356 ± 0.000	0.182 ± 0.000	0.248 ± 0.000		
CLR-MVP		0.476 ± 0.000	0.437 ± 0.000	0.597 ± 0.000			0.851 ± 0.000	0.886 ± 0.000	0.520 ± 0.000		0.365 ± 0.001			
t-SVD-MSC	0.858 ± 0.001		0.725 ± 0.002	0.789 ± 0.001			0.784 ± 0.000	0.834 ± 0.000	0.836 ± 0.005		0.766 ± 0.002			
SM ² SC		0.812 ± 0.001	0.853 ± 0.003	0.887 ± 0.006		0.937 ± 0.000	$0.952 {\pm} 0.000$	0.963 ± 0.000	0.442 ± 0.008			0.319 ± 0.007		
EILMSC		0.826 ± 0.028	0.811 ± 0.082	0.855 ± 0.063			0.949 ± 0.107	0.961 ± 0.081	0.811 ± 0.066	0.874 ± 0.025	0.763 ± 0.057	0.778 ± 0.054		
LMVSC	0.480 ± 0.000	0.242 ± 0.000	0.403 ± 0.000	0.380 ± 0.000		0.382 ± 0.000	0.151 ± 0.000	0.394 ± 0.000	0.360 ± 0.000		0.198 ± 0.000	0.246 ± 0.000		
E ² OMV C	0.849 ± 0.000	0.707 ± 0.000	0.713 ± 0.000	0.783 ± 0.000			0.920 ± 0.000	0.940 ± 0.000						
RMSL	0.943 ± 0.009	0.831 ± 0.005	0.862 ± 0.004	$0.894 {\pm} 0.002$	0.972 ± 0.002	0.905 ± 0.005	0.931 ± 0.002	0.947 ± 0.004	0.511±0.006	0.490 ± 0.007	0.332±0.010	0.372 ± 0.005		
CCL-MVC	$0.984{\pm}0.000$	$0.951{\pm}0.000$	$0.962{\pm}0.000$	$0.971 {\pm} 0.000$	$0.996 {\pm} 0.000$	$0.986{\pm}0.000$	$0.991{\pm}0.000$	$0.993{\pm}0.000$	$0.890{\pm}0.053$	$0.892{\pm}0.019$	$0.832{\pm}0.052$	$0.852{\pm}0.048$		
Datasets		UCI-	3view			Stil	IDB		MITindoor					
Methods	ACC	NMI	AR	F-Score	ACC	NMI	AR	F-Score	ACC	NMI	AR	F-Score		
AWP	0.806 ± 0.000	0.842 ± 0.000	0.759 ± 0.000	0.785 ± 0.000			0.058 ± 0.000	0.223 ± 0.000	0.499 ± 0.000	0.629 ± 0.000	0.317 ± 0.000	0.329 ± 0.000		
MvDSCN	0.308 ± 0.011	0.299 ± 0.013	0.158 ± 0.009	0.281 ± 0.006	0.377±0.023	0.245 ± 0.020	0.169 ± 0.003	0.320 ± 0.015	0.084 ± 0.003	0.182 ± 0.004	0.014 ± 0.002	0.037 ± 0.001		
OMVFC-LICAG	0.833 ± 0.000	0.811 ± 0.000	0.731 ± 0.000	0.759 ± 0.000	0.376 ± 0.000	0.129 ± 0.000	0.087 ± 0.000	0.273 ± 0.000	0.319 ± 0.000	0.453 ± 0.000	0.157 ± 0.000	0.171 ± 0.000		
MLAN		0.910 ± 0.000	0.847 ± 0.000	0.864 ± 0.000	0.349 ± 0.000	0.138 ± 0.000	0.098 ± 0.000	0.272 ± 0.000		0.408 ± 0.012				
GMC		0.815 ± 0.000		0.713 ± 0.000				0.278 ± 0.000		0.204 ± 0.000				
UOMvSC	0.981 ± 0.000	0.956 ± 0.000	0.958 ± 0.000	0.962 ± 0.000	0.328 ± 0.000	0.131 ± 0.000	0.084 ± 0.000	0.246 ± 0.000		0.506 ± 0.000				
EOMSC-CA		0.673 ± 0.000	0.459 ± 0.000	0.533 ± 0.000		0.127 ± 0.000	0.085 ± 0.000	0.245 ± 0.000						
LMSC			0.783 ± 0.000	0.805 ± 0.000	0.327 ± 0.003		0.084 ± 0.011	0.269 ± 0.005	0.384 ± 0.006	0.506 ± 0.005	0.243 ± 0.005	0.254 ± 0.004		
MCLES		0.891 ± 0.008	0.877 ± 0.009	0.889 ± 0.008		0.153 ± 0.000	0.098 ± 0.000	0.264 ± 0.000						
FPMVS-CAG		0.744 ± 0.000	0.645 ± 0.000	0.683 ± 0.000		0.124 ± 0.000	0.089 ± 0.000	0.251 ± 0.000	0.204 ± 0.000	0.390 ± 0.000	0.085 ± 0.000	0.108 ± 0.000		
CLR-MVP		0.920 ± 0.001	0.924 ± 0.001	0.932 ± 0.001	0.337 ± 0.002		0.095 ± 0.001	0.273 ± 0.002						
t-SVD-MSC		0.884 ± 0.005	0.786 ± 0.003	0.800 ± 0.004	0.347 ± 0.010		0.088 ± 0.003	0.255 ± 0.004		0.750 ± 0.007				
SM ² SC				0.923 ± 0.001										
ETLMSC			0.953 ± 0.069	$0.958 {\pm} 0.062$				$0.523 {\pm} 0.024$						
LMVSC				0.681 ± 0.000				0.239 ± 0.000						
E ² OMVC			0.943 ± 0.000					0.265 ± 0.000						
RMSL	0.578 ± 0.013	0.511 ± 0.014	0.40/±0.017	0.474 ± 0.007	0.356±0.003	0.131 ± 0.001	0.090 ± 0.002	0.243 ± 0.001	$0.2/9\pm0.004$	$0.3/2\pm0.003$	0.125 ± 0.005	0.139 ± 0.002		
CCL-MVC	$\textbf{0.988}{\pm 0.037}$	$0.996{\pm}0.013$	$0.988{\pm}0.037$	$0.990 {\pm} 0.033$	$0.752{\pm}0.077$	$0.682{\pm}0.042$	$0.597{\pm}0.079$	$\textbf{0.666}{\pm}\textbf{0.066}$	$0.860{\pm}0.038$	$0.946{\pm}0.011$	$0.842{\pm}0.038$	$0.844{\pm}0.037$		

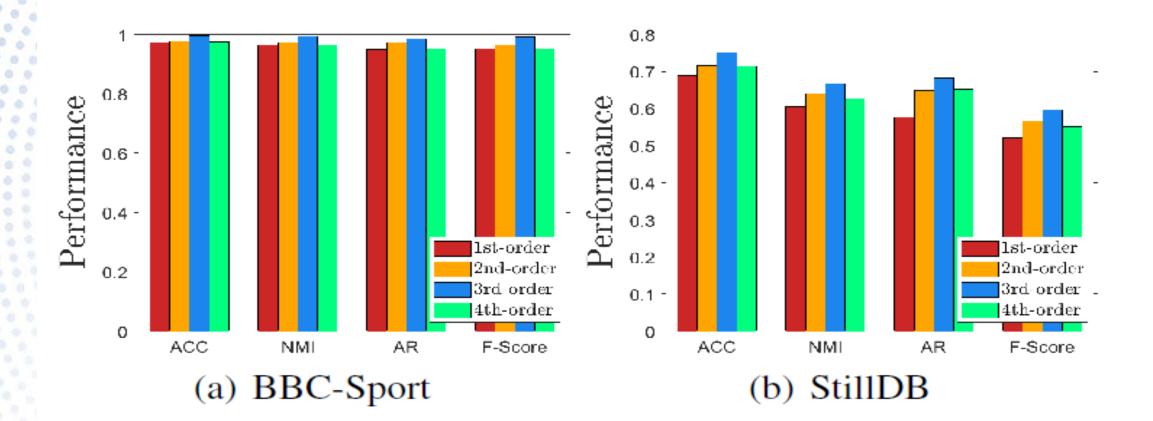
ABLATION STUDY & CONVERGENCE

Significance of cross-view diversity

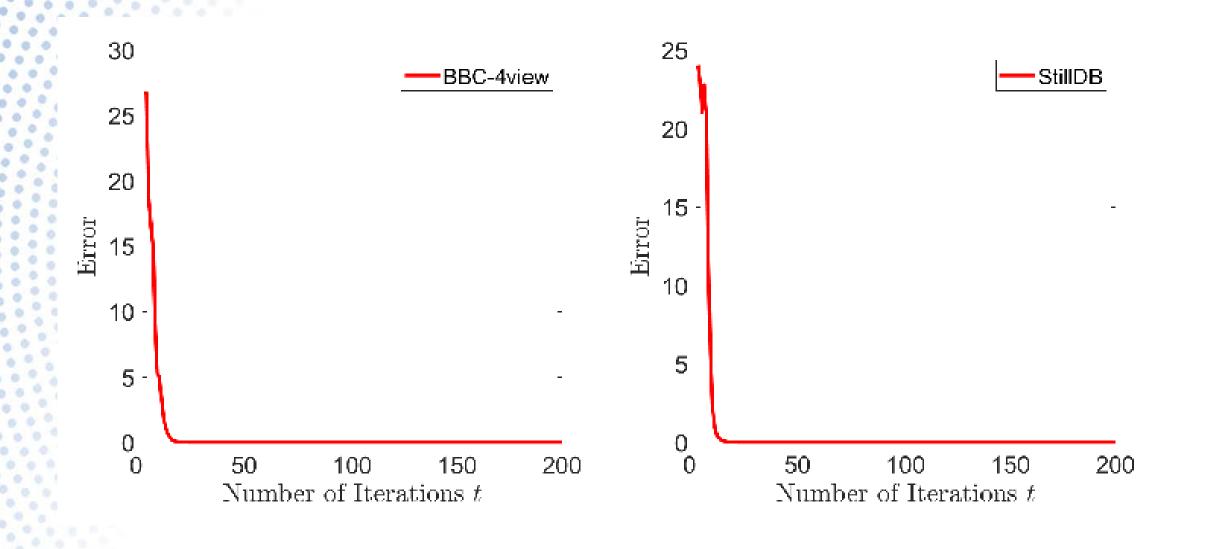


3

CROSS-ORDER NEIGHBOR INFORMATION



CONVERGENCE CURVES ON SAMPLE DATASETS



BRIEF CONCLUSION OF TOPIC 3

- CCL-MVC for enhanced MVC with diversity and cross-order info
 - Efficient optimization with convergence guarantee
 - Superior performance experimentally validated

Future Work:

• More accurate approximation of tensor rank

TOPIC 4 – NEW DEEP LEARNING MODEL FOR TIME SERIES CLASSIFICATION

Motivation

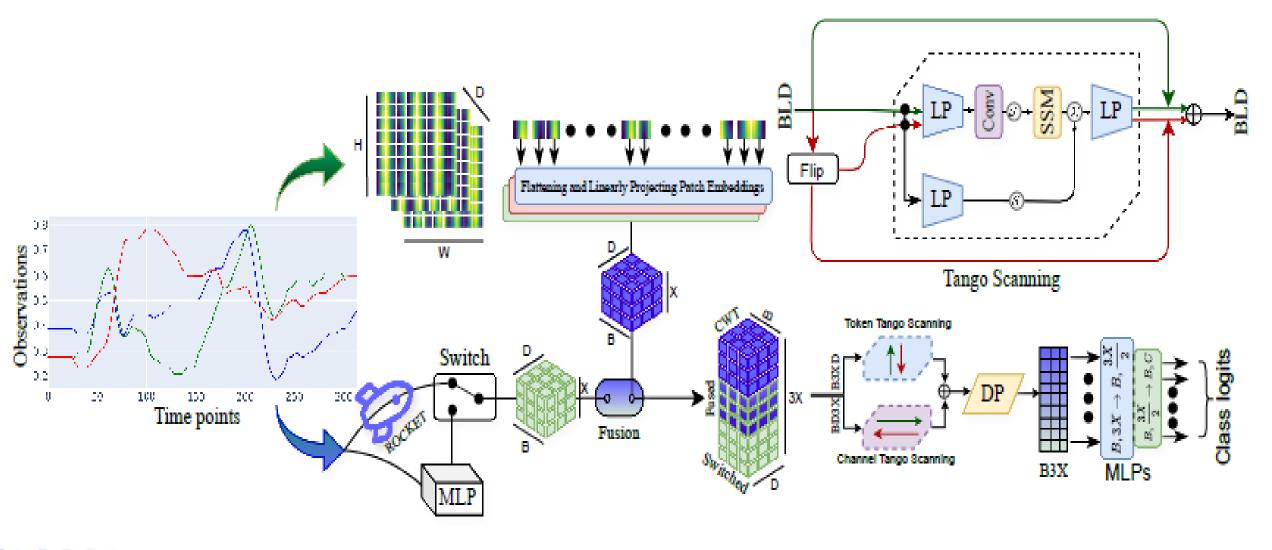
- Importance of time series classification (TSC)
 - Structured format; mixed types; predominant in various domains
- Challenges with existing deep learning models for TSC
 - Classical methods (DTW, XGBoost): accuracy, long-range dependency
 - Deep learning models (Rocket, LSTM, TCN): accuracy, LRD
 - Transformer-based models (Informer, AutoFormer, FlowFormer, FedFormer): efficiency, scalability
- Need for an efficient, accurate, scalable approach
 - Also, existing models does not consider inversion invariance

NEW MODEL: TSCMAMBA

- **Key Innovations**
 - Captures features that are robust to time shifting and time inversion
 - Use multi-view framework to integrate time-frequency features at global and local scales for classification
 - First to leverage SSM modules (Mamba) for TSC with linear scalability and small memory footprints
 - Creates a new Mamba scanning scheme (Tango scanning): capturing inversion-invariant features

TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification, MA Atik, Q Cheng. 2024. arXiv preprint arXiv:2406.04419

MODEL ARCHITECTURE



DATASETS FOR EVALUATIONS

	Datasets	Channels	Length	Train	Test	Classes	Domain
	EthanolConcentration (EC)	3	1751	261	263	4	Alcohol Industry
ts	FaceDetection (FD)	144	62	5890	3524	2	Face (250Hz)
datasets	Handwriting (HW)	3	152	150	850	26	Smart Watch
lat	Heartbeat (HB)	61	405	204	205	2	Clinical
	JapaneseVowels (JV)	12	29	270	370	9	Audio
nar	PEMS-SF (PS)	963	144	267	173	7	Transportation
chn	SelfRegulationSCP1 (SCP1)	6	896	268	293	2	Health (256Hz)
Benchmark	SelfRegulationSCP2 (SCP2)	7	1152	200	180	2	Health (256Hz)
В	SpokenArabicDigits (SA)	13	93	6599	2199	10	Voice (11025Hz)
	UWaveGestureLibrary (UG)	3	315	120	320	8	Gesture
	AtrialFibrillation (AF)	2	640	15	15	3	ECG
ß	BasicMotions (BM)	6	100	40	40	4	Human Activity Recognition
ase	Cricket (CR)	6	1197	108	72	12	Human Activity Recognition
ata	FingerMovements (FM)	28	50	316	100	2	EEG
Ρľ	HandMovementDirection (HMD)	10	400	160	74	4	EEG
ona	MotorImagery (MI)	64	3000	278	100	2	EEG
iti	PenDigits (PD)	2	8	7494	3498	10	Motion
Additional datasets	PhonemeSpectra (PHS)	11	217	3315	3353	39	Audio
Α	RacketSports (RS)	6	30	151	152	4	Human Activity Recognition
	StandWalkJump (SWJ)	4	2500	12	15	3	ECG

EXPERIMENTAL RESULTS (20 BASELINES)

Classification Accuracy (%). The . symbol in Transformer models denotes *former used. The best average result and rank: in **bold**; the second best: underlined. The ranks: Wilcoxon signed-rank test (lower is better).

Datasets	Methods DTW XGBoost Rocket LSTM LSTNet LSSL TCN Trans Re. In. Pyra Auto. Station. FED. ETS. Flow. DLinear LightTS. TimesNet TSLANet TSCMan														TSCMamba						
	(1994)	(2016)		(1997)													(2023)	(2022a)	(2023)	(2024)	Ours
EC	32.3	43.7	45.2	32.3	39.9	31.1	28.9	32.7	31.9	31.6	30.8	31.6	32.7	31.2	28.1	33.8	32.6	29.7	35.7	30.4	62.0
FD	52.9	63.3	64.7	57.7	65.7	66.7	52.8	67.3	68.6	67.0	65.7	68.4	68.0	66.0	66.3	67.6	68.0	67.5	68.6	66.8	69.4
HW	28.6	15.8	58.8	15.2	25.8	24.6	53.3	32.0	27.4	32.8	29.4	36.7	31.6	28.0	32.5	33.8	27.0	26.1	32.1	57.9	53.3
HB	71.7	73.2	75.6	72.2	77.1	72.7	75.6	76.1	77.1	80.5	75.6	74.6	73.7	73.7	71.2	77.6	75.1	75.1	78.0	77.6	76.6
JV	94.9	86.5	96.2	79.7	98.1	98.4	98.9	98.7	97.8	98.9	98.4	96.2	99.2	98.4	95.9	98.9	96.2	96.2	98.4	99.2	97.0
PS	71.1	98.3	75.1	39.9	86.7	86.1	68.8	82.1	82.7	81.5	83.2	82.7	87.3	80.9	86.0	83.8	75.1	88.4	89.6	83.8	90.2
SCP1	77.7	84.6	90.8	68.9	84.0	90.8	84.6	92.2	90.4	90.1	88.1	84.0	89.4	88.7	89.6	92.5	87.3	89.8	91.8	91.8	92.5
SCP2	53.9	48.9	53.3	46.6	52.8	52.2	55.6	53.9	56.7	53.3	53.3	50.6	57.2	54.4	55.0	56.1	50.5	51.1	57.2	61.7	66.7
SA	96.3	69.6	71.2	31.9	100.0	100.0	95.6	98.4	97.0	100.0	99.6	100.0	100.0	100.0	100.0	98.8	81.4	100.0	99.0	99.9	99.0
UG	90.3	75.9	94.4	41.2	87.8	85.9	88.4	85.6	85.6	85.6	83.4	85.9	87.5	85.3	85.0	86.6	82.1	80.3	85.3	91.3	93.8
Avg.	67.0	66.0	72. <mark>5</mark>	48.6	71.8	70.9	70.3	71.9	71.5	72.1	70.8	71.1	72.7	70.7	71.0	73.0	67.5	70.4	73.6	76.04	80.05
Rank	15.20	15.55	10.25	19.55	10.40	11.70	12.40	9.40	9.95	8.90	12.80	11.50	7.30	12.40	12.85	6.45	14.60	12.65	<u>6.40</u>	6.40	4.35

COMPUTATIONAL EFFICIENCY

FLOPs comparison among the top performing methods. The values: in GigaFLOPS (G) or TeraFlops (T), 1 TFLOPs=1000 GFLOPs A lower value: better computational efficiency

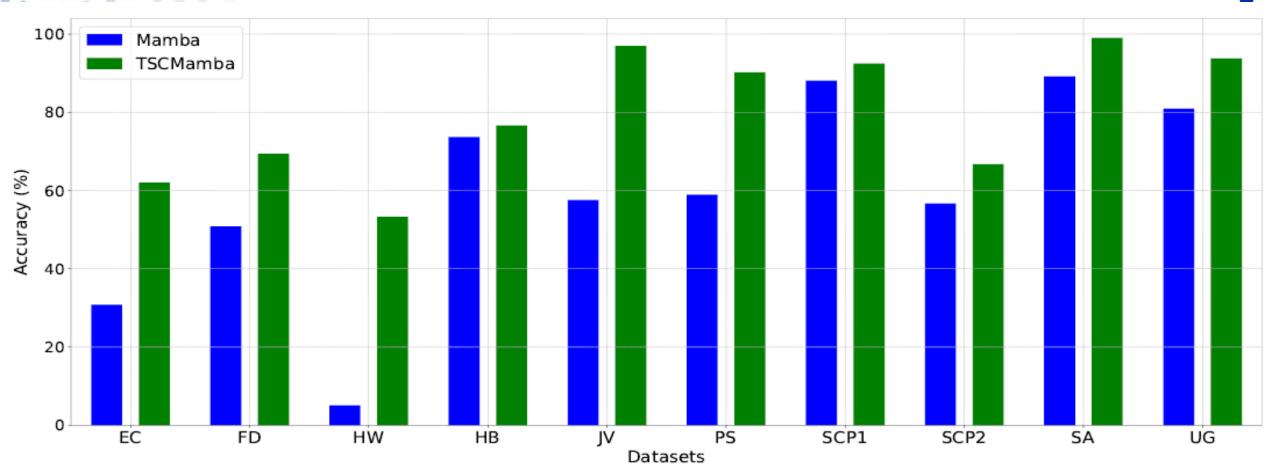
Methods	EC	FD	HW	HB	JV	\mathbf{PS}	SCP1	SCP2	SA	UG
Flow. Wu et al. (2022)	1.06T	37.97G	92.21G	246.37G	15.76G	94.02 G	$542.64 \mathrm{G}$	697.74G	$50.33 \mathrm{G}$	$190.82 \mathrm{G}$
TimesNet. Wu et al. (2023)	1.11T	161.93G	$115.88 \mathrm{G}$	$182.69 \mathrm{G}$	48.15G	74.18G	$503.62 \mathrm{G}$	2.33T	$26.00 \mathrm{G}$	247.73G
TSCMamba (Ours)	1.69G	11.53G	27.24G	8.39G	12.33G	2.84T	3.42G	11.11G	0.78G	13.86G

ADDITIONAL EXPERIMENTAL RESULTS

Additional classification results on the UEA datasets in accuracy (as %). The ranks: Wilcoxon signed-rank test (lower is better).

Dataset	TSCMamba	TSLANet	GPT4TS	TimesNet	ROCKET	CrossF.	PatchTST	MLP	TS-TCC	TS2VEC
	Ours	(2024)	(2023)	(2023)	(2020)	(2023)	(2023)	(2023)	(2021)	(2022)
AtrialFibrillation	67.00	40.00	33.33	33.33	20.00	46.66	53.33	46.66	33.33	53.33
BasicMotions	100.00	100.00	92.50	100.00	100.00	90.00	92.50	85.00	100.00	92.50
Cricket	98.61	98.61	8.33	87.50	98.61	84.72	84.72	91.67	93.06	65.28
FingerMovements	69.00	61.00	57.00	59.38	61.00	64.00	62.00	64.00	44.00	51.00
HandMovementDirection	71.62	52.70	18.92	50.00	50.00	58.11	58.11	58.11	64.86	32.43
MotorImagery	62.00	62.00	50.00	51.04	53.00	61.00	61.00	61.00	47.00	47.00
PenDigits	98.54	98.94	97.74	98.19	97.34	93.65	99.23	92.94	98.51	97.40
PhonemeSpectra	24.66	17.75	3.01	18.24	17.60	7.55	11.69	7.10	25.92	8.23
RacketSports	91.45	90.79	76.97	82.64	86.18	81.58	84.21	78.95	84.87	74.34
StandWalkJump	73.33	46.67	33.33	53.33	46.67	53.33	60.00	60.00	40.00	46.67
Average	75.62	66.85	47.11	63.36	63.04	64.06	66.68	64.54	63.15	56.82
Rank	1.65	<u>3.90</u>	8.60	5.70	5.70	6.00	4.35	5.95 ₄₆	5.45	7.70

COMPARISON WITH MAMBA



TSCMamba (using proposed Tango scanning) in comparison with directly applying regular Mamba module.

47

ABLATION STUDY (COMPONENT-WISE)

į

Ablation experiments on particular components in our method.

Mamba	Avg.Pool	ROCKET	AF	EC	FD	HW	HB	JV	\mathbf{PS}	SCP1	SCP2	SA	UG	Avg.
1	1	1	1	62.0	57.0	53.3	74.1	93.0	90.2	92.5	66.7	94.1	93.8	77.67
×	✓	✓	1	33.1	63.2	34.1	73.2	85.4	81.5	86.7	57.2	74.0	89.1	67.75
1	×	1	1	31.6	64.2	52.0	74.1	94.1	63.0	86.7	60.6	96.7	92.8	71.58
1	✓	X	1	31.6	69.4	24.8	76.6	97.0	87.3	91.8	58.3	97.6	86.2	72.06
1	1	1	X	30.0	51.5	49.3	72.7	91.4	84.4	88.7	58.9	90.0	90.3	70.72

MEAN AND STD DEV OVER DIFFERENT RUNS



Performance of TSCMamba over 5 random runs. Mean performance: green bars, Standard deviation: red error bars (very small).

K

BRIEF SUMMARY OF TIME SERIES CLASSIFICATION

- We create a new model for time series classification, TSCMamba
- It leverages a new scanning scheme for Mamba to take advantage of inversion invariance
- It shows better performance than SOTA models (> 10 models) on 20 benchmark time series datasets (in both averaged acc. and rank)
- It is efficient typically uses a small fraction of FLOPS than other top performing models

REFERENCES

- MA Ahamed, Q Cheng (2024). MambaTab: A plug-and-play model for learning tabular data. IEEE MIPR. Code available at GitHub.
- 2. MA Ahamed, Q Cheng (2024). TimeMachine: A Time Series is Worth 4 Mambas for Long-term Forecasting. ECAI. Code Available at GitHub.
- 3. C Peng, Y Liu, K Kang, Y Chen, X Wu, A Cheng, Z Kang, C Chen, and Q Cheng (2022). Hyperspectral image denoising using nonconvex local low-rank and sparse separation with spatial-spectral total variation regularization. IEEE Transactions on Geoscience and Remote Sensing, 60:1–17.
- 4. C Peng, Z Kang, H Li, and Q Cheng (2015). Subspace clustering using logdeterminant rank approximation. ACM KDD, pp. 925–934.
- 5. Z Kang, C Peng, Q Cheng (2017). Twin learning for similarity and clustering: A unified kernel approach. AAAI.
- 6. Z Kang, C Peng, Q Cheng (2017). Kernel-driven similarity learning. Neurocomputing. 210-219.

REFERENCES

7. C Peng, K Zhang, Y Chen, C Chen, Q Cheng (2024). Cross-View Diversity Embedded Consensus Learning for Multi-View Clustering. IJCAI.

8. MA Atik, Q Cheng (2024). TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification. arXiv preprint arXiv:2406.04419

Thank you.

Winiversity of Kentucky.

53