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BRIEF OUTLINE

Four Topics
• A New Technique for Tabular Data Learning Problems

• A New Deep Learning Model for Long-Term Time Series Forecasting

• A New Diversity-Aware Tensor-Formulated Multi-View Clustering Technique

• A New Deep Learning Model for Time Series Classification 

• (Optional) An Unsupervised Circadian Phase Inference Technique for Multi-
Omics Data with Applications to Neurodegenerative Diseases
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1ST TOPIC:  A NEW DEEP LEARNING APPROACH FOR 
HANDLING TABULAR DATA
Motivation
• Importance of tabular data across domains

• Structured format; mixed types; predominant in various domains  
• Challenges with existing deep learning models for tabular data

• Classical methods (MLP, XGBoost, LR): accuracy 
• Deep learning models (TabNet, CNN-based, DCN): accuracy
• Transformer-based models (AutoInt, TabTransformer, FT-former, 

TransTab): efficiency, accessibility, and scalability
• Self-Supervised Learning models (VIME, SCARF): accuracy 

• Need for an accurate, efficient, scalable approach
• Capturing correlations across features and samples 
• Also, existing models not suited to feature incremental learning 
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NEW MODEL: MAMBATAB

• Novel approach leveraging structured state-space model (SSM)

• Based on Mamba, an SSM variant

• B, C, Δ:  time varying (dependent on input); A: diagonal
• Advantages: 

• Small model size and number of parameters
• Minimal preprocessing
• High performance in accuracy
• Linear complexity and linear scalability
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MambaTab: A plug-and-play model for learning tabular data. MA Ahamed, Q Cheng, IEEE MIPR 2024. 
Code available at GitHub.  



METHOD - DATA PREPROCESSING

Simple, minimal preprocessing

• Normalization and imputation
• Min-max scaling
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METHOD - EMBEDDING REPRESENTATION LEARNING

• Encoding categorical/Binary variables into numerical var. automatically
- Each sample encoded into a token in a latent space 

• Fully connected layer to learn embedded representations

• Enabling meaningful representations and incremental learning

• Layer normalization applied
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METHOD - CASCADING MAMBA BLOCKS
• Mamba block maps features into a feature space of the same dim. 
• Utilizes linear projections, 1D causal convolution, SiLU activation, SSMs

• Context-dependent feature extraction and reasoning for long-range dependencies
• Cascading multiple Mamba blocks to seek important information w. various contexts
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METHOD - OUTPUT PREDICTION

• Fully connected layer maps Mamba block outputs to predictions
• Sigmoid activation for probability scores
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EXPERIMENTAL SETUP
• Datasets: 8 diverse public tabular datasets

• Baselines: 12 SOTA models - LR, XGBoost, MLP, SNN, TabNet, DCN, AutoInt, 
TabTransformer, FT-Transformer, VIME, SCARF, TransTab

• Settings: Vanilla supervised learning, feature incremental learning
• Metrics: AUROC
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RESULTS - VANILLA SUPERVISED LEARNING

AUROC results on 8 datasets (averaged over 10 runs)

• MambaTab outperforms baselines on majority datasets
• Hyperparameter tuning (MambaTab-T) improves upon default model
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RESULTS - FEATURE INCREMENTAL LEARNING

AUROC results under feature incremental setting

• MambaTab outperforms TransTab and other basdelines with default 
hyperparameters on all datasets
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ANALYSIS - PARAMETER EFFICIENCY

Comparing learnable parameters of MambaTab vs Transformers

• MambaTab uses <1% parameters of TransTab while achieving 
better performance
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ANALYSIS - SCALABILITY AND ABLATION STUDY

• Extensive hyper-parameter sensitivity study and structural ablations study
• More in the paper – MambaTab - Not shown here 14



BRIEF CONCLUSION OF THE 1ST TOPIC

• MambaTab: out-of-the-box, plug-and-play model for tabular data

• Simple architecture, minimal preprocessing, superior 
performance, parameter-efficient

• We also obtained superior results  for  SSL, not shown here

• Holds promise for enabling wider practical applications across 
domains
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2ND TOPIC – A DEEP LEARNING MODEL FOR TIME SERIES 
LONG-TERM FORECASTING

• Importance of long-term time-series forecasting (LTSF) across domains
• Challenges in LTSF 

• capturing long-term dependencies
• scalability 
• computational efficiency

• Limitations of existing approaches
- Non-Transformer-based: Classical models (ARIMA, RNN, GARCH), Linear models 

– MLP (DLinear, RLinear, TiDE), CNN (TimesNet, Scinet) 
linear complexity and scalability, may not capture  LT dependency, accuracy

- Transformer-based SL models (iTransformer, PatchTST, CrossFormer): can 
capture LT dependency, SOTA accuracy, quadratic complexity and not scalable well

- SSL Representation Learning: typically Transformer-based (TST, TS-TCC): 
not as competitive as SL models in accuracy
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NEW MODEL: TIMEMACHINE
• Novel approach leveraging structured state-space models (SSMs), Mamba
• Exploiting unique properties of time series data to produce salient contextual 

cues at multi-scales
• Innovative integrated quadruple-Mamba architecture

• Key Innovations
- First to leverage purely SSM modules for context-aware LTSF with linear 

scalability and small memory footprints
- Unifies handling of channel-mixing and channel-independence situations
- Selects contents for prediction incorporating global and local contexts at 

different scales
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TimeMachine: A Time Series is Worth 4 Mambas for Long-term Forecasting. MA Ahamed, Q Cheng, ECAI, 2024. 
Code Available at GitHub. 



METHOD - DATA PREPROCESSING AND EMBEDDED 
REPRESENTATIONS

Preprocessing
- Normalization options: RevIN or Z-score
- Channel mixing vs. channel independence handling

Embedded Representation
- Two-stage embedded representations using MLPs
- Enables handling variable input sequence lengths
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METHOD - INTEGRATED QUADRUPLE MAMBAS 

• Two pairs of Mambas at 2 embedding levels

• Capture long-term dependencies and provide local contexts

• Handling channel-mixing and channel-independence cases

• Transposable Mambas for unified architecture
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METHOD - OUTPUT PROJECTION AND ARCHITECTURE
• Two-stage output projection using MLPs
• Residual connections for stabilization and overfitting reduction
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EXPERIMENTAL SETUP

• Datasets: 7 standard benchmark datasets

• Baselines: 11 SOTA models
• Metrics: MSE and MAE
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RESULTS - QUANTITATIVE

Table comparing TimeMachine with baselines on all datasets

• Superior performance in almost all cases
• Effectiveness in handling varying number of channels and look-back windows 22



RESULTS - QUALITATIVE
Visually comparing TimeMachine with best-performing baselines

• TimeMachine aligns well with ground truth
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ANALYSIS - MEMORY FOOTPRINT AND SCALABILITY
• Comparison of memory footprints with baselines

(Traffic: 862 channels; Weather: 21 channels)
• Linear scalability in terms of learnable parameters
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BRIEF CONCLUSION OF TOPIC 2

• TimeMachine: novel deep learning model for LTSF
• Superior performance, linear scalability, small memory footprints

• Potential for future exploration in self-supervised learning setting
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TOPIC 3 - CROSS-VIEW DIVERSITY EMBEDDED CONSENSUS 
LEARNING FOR MULTI-VIEW CLUSTERING
• Importance of multi-view clustering (MVC)

- Clustering is fundamental; 
- Data from multiple sources often need multi-view clustering 

• Challenges in MVC
- How to find consensus information from multiple views
- Diversity not properly embedded – redundant information across views often 

emphasized
- How to simultaneously learn consensus and diversity information 

• Limitations of existing methods
- Existing methods follow 2 steps: affinity matrix; spectral clustering

- for affinity matrix, low-rank tensor recovery: tensor nuclear norm 
- Diversity is not incorporated
- High-order neighbor information is rarely considered
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RELATED WORK
Two main categories of MVC methods
• Spectral clustering (SPC)-based subspace clustering: Markov random walk

- RMSC: transition prob. matrix for each view, common low-rank 
stochastic matrix by combining w. Markov mixture

- MVC: low-rank tensor recovery from tensor nuclear norm
- ETLMSC: essential low-rank tensor 

• Graph-based subspace clustering: affinity matrix from similarity matrix 
- Focus on graph-based methods using similarity matrix

ETLMSC:
• Multi-view data:                               where
• Trans. Prob. Matrix-based tensor:
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KEY INNOVATIONS

• Recovering low-rank essential tensor from cross-order neighbor 
graph tensor

• Embedding auto-adjusted weighting vector for cross-view diversity 
and consensus

• Efficient optimization algorithm with convergence guarantee

• Superior performance over baselines
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NEW METHOD: CCL-MVC
• Constructing cross-order neighbor tensor

- Higher-order neighbor relationships
- Fine-grained probability tensor with local structure preservation

• Recovering low-rank essential tensor: log-based rank and sparsity approx. 

29

- C Peng, Y Liu, K Kang, Y Chen, X Wu, A Cheng, Z Kang, C Chen, and Q Cheng. Hyperspectral image denoising using nonconvex 
local low-rank and sparse separation with spatial-spectral total variation regularization. IEEE Transactions on Geoscience and 
Remote Sensing, 60:1–17, 2022.

- C Peng, Z Kang, H Li, and Q Cheng. Subspace clustering using log-determinant rank approximation. ACM KDD, pp. 925–934. 
2015



NEW METHOD: CCL-MVC 

• Constructing consensus representation matrix

Z0: consensus affinity matrix fusing cross-view neighbor graphs
wv: auto adjusted weights for the v-th view
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- Twin learning for similarity and clustering: A unified kernel approach. Z Kang, C Peng, Q Cheng, AAAI, 2017.
- Kernel-driven similarity learning. Z Kang, C Peng, Q Cheng, Neurocomputing. 2017; 210-219.



CCL-MVC FORMULATION

• Incorporating Diversity Representation Matrix Learning
- Auto-adjusted weighting vector for cross-view diversity
- Embedding fusion into the model
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Cross-View Diversity Embedded Consensus Learning for Multi-View Clustering. 
C Peng, K Zhang, Y Chen, C Chen, Q Cheng. IJCAI 2024.



OPTIMIZATION ALGORITHM
Alternating optimization with ALM
Sub-problems and solutions for each variable
• Optimization of Z: 

• Optimization of Q: 

• Optimization of E:

• Optimization of Z0, w: straightforward  
• Updating of Y1, Y2, and ρ: standard steps 
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CONVERGENCE ANALYSIS

Theorem 1: Boundedness of variable sequences

Theorem 2: Convergence to a stationary point
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EXPERIMENTAL SETUP

• Datasets:  6 standard benchmark datasets
- BBC-4view, BBC-Sport, Flowers, UCI-3view, StillDB, MITindoor,

• Evaluation metrics: 4 metrics
- clustering accuracy (ACC), normalized mutual information (NMI), 
adjusted rand index (AR), F-Score

• Parameter settings
• Comparing our method with 17 SOTA baselines

- CCL-MVC: Cross-view diversity embedded Consensus Learning for 
Multi-View Clustering

- Superiority and stability
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CLUSTERING PERFORMANCE RESULTS
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ABLATION STUDY & CONVERGENCE
Significance of cross-view diversity
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CROSS-ORDER NEIGHBOR INFORMATION
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CONVERGENCE CURVES ON SAMPLE DATASETS
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BRIEF CONCLUSION OF TOPIC 3

• CCL-MVC for enhanced MVC with diversity and cross-order info

• Efficient optimization with convergence guarantee

• Superior performance experimentally validated

Future Work:
• More accurate approximation of tensor rank
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TOPIC 4 – NEW DEEP LEARNING MODEL FOR TIME 
SERIES CLASSIFICATION
Motivation
• Importance of time series classification (TSC)

• Structured format; mixed types; predominant in various domains  
• Challenges with existing deep learning models for TSC

• Classical methods (DTW, XGBoost): accuracy, long-range dependency 
• Deep learning models (Rocket, LSTM, TCN): accuracy, LRD
• Transformer-based models (Informer, AutoFormer, FlowFormer, 

FedFormer): efficiency, scalability
• Need for an efficient, accurate, scalable approach

• Also, existing models does not consider inversion invariance 



NEW MODEL: TSCMAMBA
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Key Innovations
- Captures features that are robust to time shifting and time inversion 

- Use multi-view framework to integrate time-frequency features at global 
and local scales for classification

- First to leverage SSM modules (Mamba) for TSC with linear scalability and 
small memory footprints

- Creates a new Mamba scanning scheme (Tango scanning):  capturing 
inversion-invariant features

TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification, MA Atik, Q Cheng. 2024. 
arXiv preprint arXiv:2406.04419



MODEL ARCHITECTURE
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DATASETS FOR EVALUATIONS
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EXPERIMENTAL RESULTS (20 BASELINES)
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Classification Accuracy (%). The . symbol in Transformer models denotes ∗former used. 
The best average result and rank: in bold; the second best: underlined. 
The ranks: Wilcoxon signed-rank test (lower is better).



COMPUTATIONAL EFFICIENCY
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FLOPs comparison among the top performing methods. 
The values: in GigaFLOPS (G) or TeraFlops (T), 1 TFLOPs=1000 GFLOPs 
A lower value: better computational efficiency



ADDITIONAL EXPERIMENTAL RESULTS

Additional classification results on the UEA datasets in accuracy (as %). 
The ranks: Wilcoxon signed-rank test (lower is better).
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COMPARISON WITH MAMBA
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TSCMamba (using proposed Tango scanning) in comparison with 
directly applying regular Mamba module.



ABLATION STUDY (COMPONENT-WISE) 
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Ablation experiments on particular components in our method.



MEAN AND STD DEV OVER DIFFERENT RUNS

Performance of TSCMamba over 5 random runs. 
Mean performance: green bars, 
Standard deviation: red error bars (very small). 49



BRIEF SUMMARY OF TIME SERIES CLASSIFICATION

• We create a new model for time series classification, TSCMamba
• It leverages a new scanning scheme for Mamba to take advantage of 

inversion invariance
• It shows better performance than SOTA models (> 10 models) on 20 

benchmark time series datasets (in both averaged acc. and rank)
• It is efficient - typically uses a small fraction of FLOPS than other top 

performing models
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Thank you. 
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