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�Abstract:
�Artificial intelligence is touted as the next frontier in healthcare, promising to revolutionize medical research and deliver equitable and low-cost care to all. However, there are many significant challenges to apply and develop AI for medical applications. Deep-learning based systems are at the forefront of AI but they are notorious at demanding large amounts of carefully labeled and annotated data. While simple labeling tasks can rely on crowdsourcing, medical data labeling requires expertise that could be rare and costly. In addition, there are usually significant bias and class imbalance issues with medical data. Expanding the knowledge base and diversity of data can be very difficult as privacy regulations limit or even prohibit medical data sharing with external organizations. In this talk, I will present results from a number of joint research projects with students and collaborators at University of Kentucky and University of California, Davis that aim at addressing some of these challenges. Specifically, I will discuss the use of semi-supervised learning and active learning to reduce labeling effort by developing novel weighting schemes to mitigate class imbalance and efficient pruning strategies to identify highly informative samples to label. To preserve privacy in distributed AI applications, we develop novel differentially private generative models for data sanitization and optimal acquisition functions for private active learning. The proposed methods are tested on both standard image benchmarks and target medical datasets used in digital pathology and autism diagnosis. 
�Biography:
�Sen-ching Samson Cheung received his Ph.D. degree from the University of California at Berkeley, in 2002. He is currently a Professor in electrical and computer engineering with the University of Kentucky (UKY). He is also an Adjunct Professor in electrical and computer engineering with the University of California at Davis, Davis. Before joining UKY in 2004, he was a Computer Scientist with the Lawrence Livermore National Laboratory, Scientific Data Mining Group. His work spans a number of different areas in multimedia, including video copy detection, data mining, video surveillance, privacy protection, encrypted domain signal processing, and computational multimedia for smart health. He is a Fellow of IEEE and a Senior Member of ACM. He was the Chair of the Multimedia Systems and Applications Technical Committee (MSA-TC) of the IEEE Circuits and Systems Society, between 2019 and 2021. He is/was an Associate Editor of IEEE TRANSACTION OF IMAGE PROCESSING, IEEE TRANSACTION ON INFORMATION FORENSICS AND SECURITY, IEEE TRANSACTION OF MULTIMEDIA, IEEE OPEN ACCESS JOURNAL ON CIRCUITS AND SYSTEMS, and Signal Processing: Image Communications.
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Research Interests
 Professor at UK since 2004
 Image Processing 

 Color, 3D, thermal images and video processing

 Security & Privacy
 Encrypted-domain signal processing
 Differential Privacy

 Applied Deep Learning
 Generative Models
 Bayesian Modeling
 Applications in Smart Health

 Technology based Autism Research
 Assistive technologies 
 Autism screening 
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Outline

 AI Challenges on Smart Health
 Autism Risk Prediction
 Whole Slide Image Segmentation
 Data privacy in Machine Learning
 Conclusions
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Challenges to apply AI in Health 4

Big BIG Data Annotation is 
Expensive

Overemphasis on 
Supervised Learning
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Autism Risk Prediction based on 
behavior markers

5



Autism Spectrum Disorder (ASD)

 What is it?
 Neuro-developmental disorder

 Significant social, communication 
and behavioral challenges

 What is the societal impact?
 1 in 36 children in the US diagnosed 

(CDC, 2023)

 Total lifetime cost = $11.5 trillion 
dollars by 2029 (Cakir et al., 2020)

 Early intervention is important for 
optimal outcome

 Average diagnosis at 60 months 
(NSCH 2019) 
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ASD Risk from Dyadic Behaviors

● UC Davis Infant Sibling Study (2003 – 2023)
● Interaction between an adult and a child
● 547 subjects: 6, 12, 18, 24 and 36 months
● Concurrent diagnosis: 60 subjects are ASD
● Over 300,000 minutes of video
● Manually coded behavior labels: look-

face, look-object, smile, vocalization 

7



ASD Risk from Dyadic Behaviors

Behavior Statistics (tabular data)
● Frequency of behaviors
● Duration of behaviors
● Gender
● Age

ASD Classifier
● 3-layer MLP neural network
● SMOTE & Tomek Links for class balancing
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Different 
CV+Audio 
features

ASD?Behavior 
Classifier

Behavior
Statistics

ASD 
Classifier

Video 
Frames

look-face, 
look-object, 
smile, 
vocalization

Expert Labels (blue) vs Model Predictions (red) for Look Face Classifier



Detailed 
Architecture
 Expert Features: 2D 

facial and eye 
landmarks, facial 
action units, gaze 
direction, head and 
object locations

 Deep-learned 
features
 I3D: mage and 

motion feature
 Audio Frequency 

Mel Spectrum
 

 Short-time 
Transformer 
Architecture
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𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥𝑡𝑡,

Alternative head: Frame prediction 
to segment detection

• Frame-based Methods: 𝐘𝐘 = 𝐶𝐶𝑡𝑡
• 𝑪𝑪𝒕𝒕: Frame behavior prediction

• Segment Detection: 𝐘𝐘 = 𝐷𝐷𝑡𝑡𝑠𝑠,𝐷𝐷𝑡𝑡𝐸𝐸 ,𝑝𝑝(𝐶𝐶𝑡𝑡) 
• 𝑫𝑫𝒕𝒕

𝒔𝒔: Distance to Start
• 𝑫𝑫𝒕𝒕

𝑬𝑬: Distance to End
•  𝑷𝑷𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆: Action Probability

• Non-Max Suppression: 
• Suppress unlikely behavior segment 

proposals
Temporal Action Localization



Experiments - Behavior Detection 11

Sensitivity Specificity Accuracy AUCROC
Hand coded 
behavior

0.76 0.86 0.85 0.81

ML behavior 0.76 0.73 0.73 0.74

Sensitivity Specificity Accuracy AUCROC
Smile 0.54 0.93 0.86 0.73
Look Face 0.66 0.84 0.81 0.75
Look Object 0.79 0.64 0.76 0.72
Vocal 0.63 0.91 0.87 0.77

Behavior Classification

ASD Risk Prediction

Sidrah Liaqat, et al. 2024. End-to-end Multi-Modal Behavior Based Autism Spectrum Disorder Detection from Video. In preparation..

There is no overlap 
in subjects between 
testing and training 
datasets.



Segmentation of Whole Slide Brian 
Tissue Image
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Whole Slide Imaging in Pathology
o Alzheimer’s Disease (AD)

• Most common cause of dementia
• 6.9 million in US (1 in 9 age >65)
• 24 million worldwide

o AD pathologies:
• Amyloid beta (Aβ) plaques and cerebral amyloid angiopathy (CAA) 
• Found predominantly in Grey Matter (GM), less in White Matter (WM)

o Whole Slide Images (WSIs): brain tissue slides are stained & 
scanned with ultra-high resolution
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WSI Dataset
o Aβ stained WSIs

o AD: diagnosis of Alzheimer’s disease

o NAD: No diagnosis of Alzheimer’s disease

o 30 WSIs annotated by two trained personnel

o Resolution: nearly 60,000 × 50,000 (gigapixel)

Data Split AD NAD

Training/Validation Set 12 8

Hold-out Test Set 6 4
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GW/WM Basic Pipeline

Modified ResNet-18

Patch-wise Classification 
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Neural Conditional Random 
Field for post-processing



Prediction Masks
Ground Truth FCN[2] U-Net[3] ResNet-Patch ResNet-NCRF
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GM, WM, and background are indicated by cyan, yellow, and black, respectively. 



Baseline
Results
MEAN IOU ON 10 HOLD-OUT 
TEST WSIS (6 AD CASES AND 
4 NAD CASES)
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Semi-supervised learning (SSL)

o Leverage unlabeled data to improve 
the performance when labeled data 
are limited 

o FixMatch[1]

• Consistency regularization 

• Pseudo-labeling (label assignment)

• Combination of above 

• Achieve promising results                                       
when only use 40 labeled images in 
CIFAR-10 

                                                                   

[1] Sohn, et al. (2020). FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence. 
Advances in Neural Information Processing Systems, 33.
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Supervised Loss                Consistency Loss



o SSL faces performance degradation 
when the unlabeled dataset is 
imbalanced 

o Two problems:
• Confirmation bias on pseudo labels – 

poor recall
• Mis-matched distributions across the 

labeled, the unlabeled, and the test 
sets
 

Class imbalance on SSL 

FixMatch underperforms on the minority classes 
(artifically skewed CIFAR10)

19
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SaR: Self-adaptive Refinement on Pseudo-labels
Pseudo label refinement:

20
𝑤𝑤𝑘𝑘

𝐸𝐸𝑘𝑘 = effective class size, discounted by increasing class size

Weighted consistency loss:



Results 
I. U has a different distribution from L and the test set is balanced.  (CIFAR-10)

II: U has a different distribution from L and the test set is imbalanced and of reversed distributions.  (CIFAR-10)
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● Measuring metric: 
● bACC (balanced 

accuracy) 
● GM (geometric 

mean)
● Imbalanced ratios (𝛄𝛄): 

for balanced set, it is 
set as 1.  
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Lai, Z., C. Wang, S.-C. Cheung, and C.-N. Chuah. 2022. SaR: Self-adaptive Refinement on 
Pseudo Labels for Multiclass-Imbalanced Semi-supervised Learning. In Workshop on 
Learning with Limited Labelled Data for Image and Video Understanding @ CVPR

Lai, Z., C. Wang, L.C. Oliveira, B. Dugger, S.-C. Cheung, and C.-N. Chuah. 2022. Smoothed 
Adaptive Weighting for Imbalanced Semi-Supervised Learning: Improve Reliability Against 
Unknown Distribution Data. In ICML 2022



Results 
SSL: Using only 0.1% 
regions as label set
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Active Learning (AL)

o Identify a small number of highly informative 
unlabeled data for expert labeling

o Active Learning
1. Identify the most informative samples 𝑆𝑆𝑡𝑡 with respect 

to classifier 𝐶𝐶𝑡𝑡−1 

2. Send to expert labeler to get labels 𝐿𝐿𝑡𝑡
3. Improve 𝐶𝐶𝑡𝑡−1 → 𝐶𝐶𝑡𝑡 with (𝑆𝑆𝑡𝑡, 𝐿𝐿𝑡𝑡) 

4. 𝑡𝑡 + 1 → 𝑡𝑡 and repeat

o  Measure informativeness via an Acquisition Function
• Uncertainty of the current classifier
• Diversity of samples

                                           

Expert
Labeler

Classifier
𝐶𝐶𝑡𝑡

Labels
𝐿𝐿𝑡𝑡

Unlabeled Samples

Classifier
𝐶𝐶𝑡𝑡−1
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Active Learner 
via

Acquisition Function

“Informative”
Samples, 𝑆𝑆𝑡𝑡



Combining AL and SL

o Active Learning
o Cold-start problem: limited starting set may 

result in high-biased selection 
o High computational complexity

o Semi-supervised learning
o Relieve the cold-start problem in AL by 

minimizing confirmation bias
o Reduce AL complexity by using pseudo 

labeling to identify uncertain samples
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Expert
Labeler

Classifier
𝐶𝐶𝑡𝑡

Labels
𝐿𝐿𝑡𝑡

“Informative”
Samples, 𝑆𝑆𝑡𝑡

Classifier
𝐶𝐶𝑡𝑡−1

Active Learner 
via

Acquisition Function

Unlabeled Samples



Combining AL and SL for WSI 25



Results 26

Lai, Zhengfeng, J. Chauhan, D. Chen, B. N. Dugger, S.-C. Cheung & C.-N. Chuah. 2024. Semi-Path: An Interactive Semi-Supervised Learning Framework for 
Gigapixel Pathology Image Analysis. Smart Health 32 (100474): 100474.



Results 27

Lai, Z., C. Wang, L. C. Oliveira, B. N. Dugger, S. C. Cheung, and C. N. Chuah. 2022. SemA-Path: Semi-supervised Active Learning with Inner-Outer Selection for 
Pathology Image Classification and Segmentation. Submitted to IEEE Trans. On Medical Imaging.

Both SSL results use FixMatch as the backbone and use 0.1% labeled area of 20 WSIs in the training set. 
SemA-Path uses 3 AL cycles to get to 0.1%.



Data Privacy in Distributed Learning 
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Privacy Challenge in AI
 Raw data contain sensitive information (e.g. health, intelligence, financial, etc.) and 

cannot leave the premise

 Local site users may not trust cloud (same cloud may also serve competitors)

 Traditional end-to-end encryption only protects storage and transfer, not calculations

 One of the top problems in AI system challenges

Cloud

Local site
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PPML Approaches
 Redaction

 Federated Learning

 Encrypted-domain processing

 Differential Privacy

 Synthetic Data

Cloud

Local site
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DP Synthetic Models

Train on 
synthetic
samples

G

GAN
G

G
G

G D
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 Use GAN trained on sensitive data to generate synthetic surrogate
 Use Differential Privacy in the training of GAN to protect private data
 Main advantages over other PPMLs:

 No changes on any downstream ML tasks
 Support human-in-the-loop operations such as active learning

 Potential limitations : poorer quality than real images

DP noise



 Perturb output to make it “almost indistinguishable” when run with 
or without any sample (neighboring)

Differential Privacy 32

Laplacian/Gaussian
Mechanism



 Perturb output to make it “almost indistinguishable” when run with 
or without any sample (neighboring)

 Privacy budget 𝜖𝜖 : smaller means more privacy but poorer quality
 Definition: For any neighboring datasets D1 and D2, we have

𝑃𝑃[𝐴𝐴(𝐷𝐷1) ∈ 𝑆𝑆] ≤ 𝑒𝑒𝜀𝜀 ⋅ 𝑃𝑃[𝐴𝐴(𝐷𝐷2) ∈ 𝑆𝑆] for all 𝑆𝑆 in Range(A)

Differential Privacy 33

Laplacian/Gaussian
Mechanism



Adding DP to deep learning 34

Problem with DPSGD + GAN : non-convergence 
or converge to a noisy equilibrium.



Problem with DPSGD + GAN : non-convergence 
or converge to a noisy equilibrium.

Adding DP to deep learning 35



DP Latent-GANs 36

Differentially Private Publicly-trained Adversarial Model Inversion (DP-PAMI)

Lower dimension and 
Gaussian regularization 
make Latent-GAN easier 
to train with DP Noise 

Use of publicly trained GAN to build basic image generation 



Results

Dongjie Chen, et al. 2024. DP-PAMI: A Latent Space Solution for Differentially Private Synthetic Data 
Generation. Submitted to IEEE Transactions on Information Forensics and Security.

Facial Landmarks from human subjects Synthetic Facial Landmarks from DPMI-GAN (𝞮𝞮=10)

37
DP-GAN (𝞮𝞮=10)



Results 38

Visual comparison at 𝜖𝜖 = 50 



Exponential Mechanism 39

Exponential
Mechanism

𝑓𝑓 𝑧𝑧 ~ exp(−𝜖𝜖 𝑈𝑈(𝑧𝑧,𝜇𝜇𝜇))

𝑓𝑓 𝑧𝑧 ~ exp(−𝜖𝜖 𝑈𝑈(𝑧𝑧, 𝜇𝜇))

Use EM to obfuscate the 
distribution of the private 
latent vectors 

Laplacian/Gaussian
Mechanism



DPGEM 40

Differentially Private Generative Model with Exponential Mechanism (DPGEM)

Classifier, 𝑈𝑈

exp(𝜖𝜖𝜖𝜖(𝑧𝑧))Sampling

𝐺𝐺𝑝𝑝(𝑧𝑧)

Sampling in latent space is 
still changing 

- Gradient information is 
readily available

- Gradient-based sampling 
method: Hamiltonian 
Monte Carlo



DPGEM 41

Differentially Private Generative Model with Exponential Mechanism (DPGEM)

Classifier, 𝑈𝑈

exp(𝜖𝜖𝜖𝜖(𝑧𝑧))Sampling

Limitation

- Every synthetic sample 
reveals sensitive private 
information

- Unlike DP-GAN which 
poses no limit on #’s of 
synthetic samples

- Need clever Privacy 
Accounting method

𝐺𝐺𝑝𝑝(𝑧𝑧)



DPGEM Visual Results 42

MNIST:
 Public: 1, 3, 5, 7, 9   
 Private: 0, 2, 4, 6, 8
Fashion-MINIST
 Public: T-shirt, Pullover, Dress, Sandal, Ankle Boot
 Private: Trouser, Coast, Shirt, Sneaker, Bag



Conclusions

 Big big data 
 Expert + machine-learned features 
 Multi-resolution approaches

 Costly Annotation
 Alternative to supervised learning: Semi-supervised learning and Active learning
 Adaptation to class imbalance and other real-world problems

 Privacy 
 Local Synthetic Model: cleanest but some impact on downstream performance
 Latent space processing 

 Latent-space DP GAN with model inversion
 Exponential mechanism to sample latent vectors

 Applications: 
 early ASD risk based on behavior markers in videos, 
 WSI segmentation of brain tissues
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Questions?

44
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