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CORONARY ARTERY DISEASE

CORONARY ARTERY CALCIUM (CAC)

Cardiovascular Disease (CVD):

» Leading cause of death globally, with 17.9 million fatalities in 2019 (32% of all
deaths worldwide).

i s = "

Coronary Artery Disease (CAD):

» A major type of CVD that affects the blood vessels supplying the heart muscle.

* Typically caused by atherosclerotic narrowing and blockage of coronary vessels.
» Responsible for 371,506 deaths in the U.S. in 2022.

Coronary Artery Calcium (CAC):
* CAC is a highly accurate marker of CAD.
» Used as a specific metric to assess the severity of CAD.
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CORONARY ARTERY DISEASE

CORONARY ARTERY CALCIUM (CAC)

A chest CT scan is recommended to assess for the presence of CAD.
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The primary goal of a cardiac CT scan for calcium scoring (CAC) is to evaluate the likelihood of CAD.

Original Image (No Mask) Original Image with Mask Overlay
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Fig. 1: ACT slice including calcified plaques and represented with its annotation.
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CORONARY ARTERY DISEASE

CORONARY ARTERY CALCIUM (CAC)

CAC scoring is a risk assessment method that sums up the amount of plaque detected in a CT scan.
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A chest CT scan may consist of multiple slices, including those that show calcified areas.

Overview of 3D Chest CT Scan
— Combines 2D image data with no maximum
limitation on the number of slices.

Data range: [-1024. 3072] or [0,4096] ( 212)
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CORONARY ARTERY DISEASE

CORONARY ARTERY CALCIUM (CAC)

Calcified Area: 2 mm’
Maximum HU 215
Slice thickness 3 mm

CAC Scoring Methods:
1) Agatston Score
2) Volume Score

3) Density Score
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Each slice is evaluated using one of these
scoring algorithms, and the sum of these
scores constitutes the overall CAC score.

Agatston Score: Volume Score: Density Score:
) CAC A“‘-’;Df"s'f)' factor Volume Score = Area - Slice Thickness| | Density Score Agatston Score
The most well known and used scoring GAC Samm2 e = e Vol Seor- i
. Volume Score = 6mm’

method is Agatston Score. Denslty SCore = G-z

Density factor

Max. HU factor Density Score %

e . . . 130-199 1 et

Minimum threshold is 130 in HU units [1]. 200299 2 e

300-399 3

2400 4
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CORONARY ARTERY DISEASE

HOW RADIOLOGISTS EVALUATE CT SCANS ?

 Challenges:

* Bones and other dense structures need to be
evaluated separately using an annotation tool and
human intervention if their density exceeds 130
Hounsfield units (HU).
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* A radiologist must determine which slices should be { _\
evaluated using an annotation tool. |
i ! —)_ Annotation Tool Total Score:
178

* The annotations generated are not suitable for Al-  gejeat for Each cT siice
driven approaches.
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CORONARY ARTERY DISEASE

CORONARY ARTERY CALCIUM (CAC)

CAC score (Agatston Risk Clinical correlation
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method) analysis
Ab
0 s?nt! Low risk of future cardiovascular events.
No risk
1-10 Minimal Minimal atherosclerosis may be present with a low risk of future cardiovascular events.
11-100 Mild There is likely mild to minimum coronary artery stenosis. A mild risk of coronary artery disease exists.
101-400 Moderate Raa?nnable amount of plaque can be confirmed. Has a moderately increased risk of future
cardiovascular events.
5400 High A high coronary calcium score corelated with a significant risk of having a cardiovascular event

(such as myocardial ischemia) in near future.

Tab. 1: Overall Risk Assessment for CAC Scoring. [2]
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HEARTLENS
GOALS:
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» Automating CAC Risk Assessment: Streamlining the process for accurate and efficient
diagnosis.

 Early Detection: Identifying CAC at an earlier stage to enable timely intervention.

* Interpreting CT Scans with LLM Models: Utilizing advanced models to analyze and interpret
CT scans when necessary.

 Al-Driven Label Generation: Eliminating human effort in annotation to produce labels suitable
for Al training.

HOW 7?7
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RELATED STUDIES

GENERAL OVERVIEW FOR RELATED STUDIES

Completely supervised training techniques are used.
Mostly CNN and U-NET (CNN) architectures are employed for risk assessment.

Average accuracy in related studies generally higher than %90. [3]
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RELATED STUDIES
SUPERVISED LEARNING

Needs a balanced and high
quality dataset.

Tends to memorizing and
overfitting the dataset
trained recently.

Lack of representations
limits transferability and
adaptability.

|
|
[ Supervised Learning } .:
Input Raw Data ‘ {Training Dataset} { Desired Qutput }
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RELATED STUDIES
APPLICATIONS IN SUPERVISED LEARNING

Segmentation
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RELATED STUDIES
CHALLENGES

Challenges in Training:

» Imbalanced dataset.

 Trained models are not transferable.

* Inadequate publicly available data

Challenges in Datasets:

* The proportion of annotated data is than 10% in CT scans.

* The average calcified area size in publicly available datasets ranges from 5
to 10 pixels in a 512x512 annotated CT slice.

 The annotated area in a CT scan constitutes only 0.0001% of the total pixel
count.

SUPERVISED
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n " a'n Tk Kentucky




SELF-SUPERVISED LEARNING
TAXONOMY

Pretext-Tasks:
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An artificially created task that a model is trained on using unlabeled data.

SSL

Context . Masked Image

Contrastive i
Based caming Modeiing Generative Models

N——
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Several representative pretext tasks of SSL [3]
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SELF-SUPERVISED LEARNING

DINO-TRAINING TECHNIQUE
DINO
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SELF-SUPERVISED LEARNING

VISION TRANSFORMERS (VIT)

\ Classification Head \

f

Transformer Encoder ﬁq Layers P
L=

| fmm@%ﬂ@ i

‘ Linear Projection of Flattened Patches ‘

ﬁﬁﬁﬁ ' - N

Multihead K= X x Wk Wk c chd
- ? ?

Attention
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= V=XxW’ W’eR>
Norm QKT
Attention(Q), K, V') = softmax (\/IT) V =AV.
K

Embedded
Patches

Transformer Encoder

CT Slices
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SELF-SUPERVISED LEARNING
ADVANTAGES OF CONTRASTIVE LEARNING

Encoder

CT Slices

o Generalized feature representations
o No need to annotated data
« Representations are transferable

n " a'n
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Repainted Samples

Masks

—{3

Classification
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SELF-SUPERVISED LEARNING

VISION TRANSFORMERS (VIT)
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SELF-SUPERVISED LEARNING
DINO

Feature Visualization

Attention Map

Original Image
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Multi-Head Self Attention ' . .
Visualization
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FOUNDATIONAL MODELS
SELF-SUPERVISED LEARNING

Main purpose:
Trained with Large Scale Datasets.
Google CT is trained with ~500K CT Slices
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Foundational Model Variations:
« Vision Foundational Models (DINO, Stable Diffusion, SAM)
« Language Foundational Models (ChatGPT, Claude, LLaMa)

. Multi-Mo)daI Models or Vision Language Models (CLIP, Gemini, GPT-4,
DALL-E

DINO foundational model trained with 142 million images.

n " a'n Tk Kentucky




FOUNDATIONAL MODELS
SELF-SUPERVISED LEARNING

Multi-Modal Foundational Models
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The most famous MMFM: CLIP Model
Trained with 400 Million Images Pretrained CLIP

(1) Contrastive pre-training
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FOUNDATIONAL MODELS

SELF-SUPERVISED LEARNING
Multi-Modal Foundational Models

Projected CT
tokens
——
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a 240 480px
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Language instructions and
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Chest CT volume
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Large language model
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There are ground glass densities in both lungs that tend to merge,
being more prominent in the lower lobes and tending to merge.

AVHI-LD

. y . . . . B
The lung parenchyma window shows diffuse bilateral infiltrates, which are consistent
with pulmonary edema. Pulmonary edema is a condition where there is an abnormal
accumulation of fluid in the lungs, which can make it difficult for patient to breathe.

PaN-YART

o

-y
In the image provided, the parenchyma appears to be clear, with no obvious signs of
consolidation, infiltration, or other abnormalities. If you have concerns about the
findings of parenchyma, a medical professional should be consulted for an evaluation.

vART

J

—,

The radiologic report reveals a single frontal view of the chest. The examination was
performed to assess for pneumothorax. There is no evident pneumothorax.

VAETT-HXD

T
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General working principle of a vision-language model [4]
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FOUNDATIONAL MODELS
SELF-SUPERVISED LEARNING

Multi-Modal Foundational Models (Vision Language Models)

6LIP \

Pre-Trained DINO Model

. Representation
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FOUNDATIONAL MODELS
SELF-SUPERVISED LEARNING

Multi-Modal Foundational Models (Vision Language Models)

LLM Patient is in Moderate Risk category
Right Coronary Arteries is mostly
LLaMa, GPT | caicified.

1|

Decoder
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FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONSs

DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS)

Pre-trained weights are compatible with RGB images.

Am s =

2d convolution layer applied to convert from single channel to 3 channels.
It makes possible to use pre-trained weights, provided by Facebook

input=1 / \ pre-trained
output=3 >/ : * weights
kernel size=3 . VlT \
padding=1 / \

2d Convolution Layer

h
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FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONSs

[ |
DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS) :.
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FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONSs

DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS)

Am s =

Original Image Masked Image

DINO-LG & Standard DINO Attention Map

| University of
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{a) Annotated CT slice with annotation (b} CT slice without annotation
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FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONS =

DINO.-LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS)

Confusion Matrix of Basic DINO Model
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Feature Extraction (12.0%)

Predicted Label

% University of
Kentucky:.




FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONS =

DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS)

Confusion Matrix of DINO-LG Model
Total Case:

Number of CT slices: 191,457 )
Annotations: 8424

TN: 157688 FP: 21744

(87.9%) (12.1%)

True Label

DINO model is trained with publicly available dataset COCA
chest CT scans which provided by Stanford.

FN: 2112 TP: 5638

(27.3%) (72.7%)
DINO model is tested directly on Heartlens dataset.

0 1
Predicted Label

Classification results, conducted on
UK Heartlens dataset

% University of
Kentuck

Am s =

)\



FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONS =

DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS)

Am s =
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DINO (ViT) Feature Extraction
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FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONS =

DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS)

CAC Classses on Test Dataset (L-NET) CAC Classes on Test Dataset (Our Approach)
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Classes
Classes
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{0-10) (11-100)  (101-400} (=400) {0-109 (11-100)  (101-400) (=400)
Predicted Classes Predicted Classes

(a) Confusion Matrix for CAC Prediction using (b) Confusion Matrix for CAC Prediction our pro-
standalone U-NET posed system

CAC Scoring and risk assessment results of overall architecture

DINO-LG: A Task-Specific DINO Model for Coronary Calcium Scoring
https://arxiv.org/abs/2411.07976
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FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONS =«

DINO-L'G (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS)

CT Slices
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DINO (ViT)

Multi-Head Self Attention
(Head Count : 12)
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Feature Visualization
[12 x 64 x 64]
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Threshold on CT
Slice (x>130)

[ PCAAnalysis | J

x>05 Detect overlapping
areas and calculate
score

64x64 PCA Output
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