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CORONARY ARTERY DISEASE

Cardiovascular Disease (CVD):
• Leading cause of death globally, with 17.9 million fatalities in 2019 (32% of all 
deaths worldwide).

Coronary Artery Disease (CAD):
• A major type of CVD that affects the blood vessels supplying the heart muscle.
• Typically caused by atherosclerotic narrowing and blockage of coronary vessels.
• Responsible for 371,506 deaths in the U.S. in 2022.

Coronary Artery Calcium (CAC):
• CAC is a highly accurate marker of CAD.
• Used as a specific metric to assess the severity of CAD.

CORONARY ARTERY CALCIUM (CAC)
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CORONARY ARTERY DISEASE
CORONARY ARTERY CALCIUM (CAC)
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A chest CT scan is recommended to assess for the presence of CAD.

The primary goal of a cardiac CT scan for calcium scoring (CAC) is to evaluate the likelihood of CAD.

Fig. 1: A CT slice including calcified plaques and represented with its annotation.



CORONARY ARTERY DISEASE
CORONARY ARTERY CALCIUM (CAC)

2/7/2025Institute for Biomedical Informatics 5

CAC scoring is a risk assessment method that sums up the amount of plaque detected in a CT scan.

A chest CT scan may consist of multiple slices, including those that show calcified areas.



CORONARY ARTERY DISEASE
CORONARY ARTERY CALCIUM (CAC)
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CAC Scoring Methods: 
1) Agatston Score
2) Volume Score
3) Density Score

Each slice is evaluated using one of these 
scoring algorithms, and the sum of these 
scores constitutes the overall CAC score.

The most well known and used scoring 
method is Agatston Score.

Minimum threshold is 130 in HU units [1].



CORONARY ARTERY DISEASE
HOW RADIOLOGISTS EVALUATE CT SCANS ? 
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• Challenges:
• Bones and other dense structures need to be 
evaluated separately using an annotation tool and 
human intervention if their density exceeds 130 
Hounsfield units (HU). 

• A radiologist must determine which slices should be 
evaluated using an annotation tool.

• The annotations generated are not suitable for AI-
driven approaches.



CORONARY ARTERY DISEASE
CORONARY ARTERY CALCIUM (CAC)
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Tab. 1: Overall Risk Assessment for CAC Scoring. [2]



HEARTLENS
GOALS: 

• Automating CAC Risk Assessment: Streamlining the process for accurate and efficient 
diagnosis.
• Early Detection: Identifying CAC at an earlier stage to enable timely intervention.
• Interpreting CT Scans with LLM Models: Utilizing advanced models to analyze and interpret 
CT scans when necessary.
• AI-Driven Label Generation: Eliminating human effort in annotation to produce labels suitable 
for AI training.

HOW ? 
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RELATED STUDIES
GENERAL OVERVIEW FOR RELATED STUDIES
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Completely supervised training techniques are used.
Mostly CNN and U-NET (CNN) architectures are employed for risk assessment. 
Average accuracy in related studies generally higher than %90. [3]

Basic CNN classifier architecture

Basic U-NET architecture



RELATED STUDIES

Needs a balanced and high 
quality dataset.
Tends to memorizing and 
overfitting the dataset 
trained recently.
Lack of representations 
limits transferability and 
adaptability.

SUPERVISED LEARNING
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RELATED STUDIES
APPLICATIONS IN SUPERVISED LEARNING
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RELATED STUDIES

Challenges in Training:
• Imbalanced dataset.
• Trained models are not transferable. 
• Inadequate publicly available data
Challenges in Datasets:
• The proportion of annotated data is than 10% in CT scans. 
• The average calcified area size in publicly available datasets ranges from 5 
to 10 pixels in a 512x512 annotated CT slice.
• The annotated area in a CT scan constitutes only 0.0001% of the total pixel 

count.
SUPERVISED

CHALLENGES

2/7/2025Institute for Biomedical Informatics 13



SELF-SUPERVISED LEARNING

Pretext-Tasks:
An artificially created task that a model is trained on using unlabeled data.  

TAXONOMY
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Several representative pretext tasks of SSL [3]



SELF-SUPERVISED LEARNING

DINO

2/7/2025Edit footer to add department / title name 15

DINO-TRAINING TECHNIQUE



SELF-SUPERVISED LEARNING
VISION TRANSFORMERS (VIT)
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SELF-SUPERVISED LEARNING
ADVANTAGES OF CONTRASTIVE LEARNING
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SELF-SUPERVISED LEARNING
VISION TRANSFORMERS (VIT)
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SELF-SUPERVISED LEARNING

Feature Visualization
DINO
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FOUNDATIONAL MODELS

Main purpose: Generating representations
Trained with Large Scale Datasets. 
Google CT is trained with ~500K CT Slices 

Foundational Model Variations: 
• Vision Foundational Models (DINO, Stable Diffusion, SAM)
• Language Foundational Models (ChatGPT, Claude, LLaMa)
• Multi-Modal Models or Vision Language Models (CLIP, Gemini, GPT-4, 

DALL-E )

DINO foundational model trained with 142 million images.

SELF-SUPERVISED LEARNING
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FOUNDATIONAL MODELS

Multi-Modal Foundational Models

SELF-SUPERVISED LEARNING
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The most famous MMFM: CLIP Model
Trained with 400 Million Images



FOUNDATIONAL MODELS

Multi-Modal Foundational Models
SELF-SUPERVISED LEARNING
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General working principle of a vision-language model [4]



FOUNDATIONAL MODELS

Multi-Modal Foundational Models (Vision Language Models)

SELF-SUPERVISED LEARNING

2/7/2025Edit footer to add department / title name 23



2/7/2025Edit footer to add department / title name 24

FOUNDATIONAL MODELS

Multi-Modal Foundational Models (Vision Language Models)
SELF-SUPERVISED LEARNING



FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONS 

Pre-trained weights are compatible with RGB images.
2d convolution layer applied to convert from single channel to 3 channels.
It makes possible to use pre-trained weights, provided by Facebook

DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS) 
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FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONS 
DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS) 
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FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONS 
DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS) 
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Original Image Masked Image

DINO-LG & Standard DINO Attention Map
Label guided local crops from c to h



FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONS 
DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS) 
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FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONS 
DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS) 
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Classification results, conducted on 
UK Heartlens dataset

Total Case: 3100
Number of CT slices: 191,457
Annotations: 8424

DINO model is trained with publicly available dataset COCA 
chest CT scans which provided by Stanford. 

DINO model is tested directly on Heartlens dataset. 



FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONS 
DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS) 
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FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONS 
DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS) 
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CAC Scoring and risk assessment results of overall architecture

DINO-LG: A Task-Specific DINO Model for Coronary Calcium Scoring
https://arxiv.org/abs/2411.07976



FOUNDATIONAL MODELS: OUR INNOVATIONS AND APPLICATIONS 
DINO -LG (LABEL GUIDED SELF-DISTILLATION WITH NO LABELS) 
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THANKS
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