Deep Learning On Embedded Computers

Adding Smart Sensors To Your Data Collection Pipeline

Instructor: Hasan A. Poonawala

Mechanical and Aerospace Engineering University of Kentucky, Lexington, KY, USA

HASAN A. POONAWALA

poonawalalab.github.io **Robotics & Automation** left wall • $p_{\rm max}$ Motion planning and • $\theta \downarrow -p$ control Dynamics & Control right wall Machine Learning for • (Robotics) LiDAR navigation control Robotic manipulation **Biological control** • Our Work systems: spiking neural networks Optimization Machine Learning (Inc. Traj Opt, (Perception) MPC, Planning) **Sponsors:** • Al-enabled machining Small Sat EM control Physics-based ML for Additive Manufacturing ARORATORY and Thermofluid sim University of Kentucky. Mechanical and Aerospace Engineering 1

Outline

- Embedded Computers
- Edge ML Applications
 - Al Coach Device
 - Object-aware Robot Navigation
 - Perception for Robot Arm Control
- Non-NVIDIA Microprocessors

Embedded Computers

An embedded system is a computer system built into a larger mechanical or electronic device to perform a specific function.

Examples

Specs

Intel Core i9 (PC) STM32

Cores	18	1 or 2	
Address length	64 Bits	32 bits	
Cache memory	32 MB	32 KB	
RAM	16 GB (ext)	1 MB	
NV Memory	1 TB (ext)	2 MB	
Clock Speed	6.0 GHz	600 MHz	
Cost	\$300-\$500	\$8-\$20	

Embedded GPU Specs

Inference Time

Deep Learning on Embedded Computers. CCS/ITSRCI Seminar Series on AI in Practice

Accuracy

Source: MulTiNet: Multimodal Neural Networks for Glaucoma Based on Transfer Learning

Al Coach

Background

• 2020 UK Igniting Research Grants pitch:

Use new GPU-enabled embedded systems to provide realtime feedback on body movement

Background

TRT-Pose

Demo

Jetson Nano

- TRT: TensorRT, NVIDIA's high-performance deep learning inference library
- TRT Pose: optimized deep learning model for real-time pose estimation on NVIDIA Jetson devices
- 80 MB Model

TRT Pose

23

Research Goal

Observe study participants in their home while they work at a desk.

Al Coach Device

Sit vs Stand vs DK Classification

Example Data 1

Туре	Duration (minutes)
Total	480
Seated	360
Standing	5
Not visible	115

Example Data 2

Туре	Duration (minutes)
Total	75
Seated	14
Standing	17
Not visible	44

Highlights

Extended remote data collection

Collected data on a ~\$200 device over weeks in participant's homes

No Wi-Fi

Avoids privacy and cybersecurity concerns (and complex IRB)

Better Models/Devices

AI Models and embedded ML devices have advanced a lot since 2021.

DL for Smart Sensors and Data

Tracking Specific Objects

Tracking Robot Arms

DREAM Model

https://sim2realai.github.io/assets/img/2020-06-29/Lee_etal_2020_dream_panda_reaching_frame.png

DREAM Model

https://sim2realai.github.io/assets/img/2020-06-29/Lee_etal_2020_dream_pipeline.png

 80 - 200 MB model depending on the backbone (VGG-X vs ResNet-X)

DREAM On Jetson Nanos

Tracking Manipulation Objects

Image credit: Varun Hariprasad

Object-aware Navigation

Navigation using Deep Learning

End-to-end Neural Net Control

Example: Aircraft Taxiing

Image-based Neural Network Controllers

Image-based neural network controllers will allow for low-cost and flexible control systems in a variety of applications.

Source: slides by Sydney Katz

Navigation at UK

- Simple linear controller < 1 MB size
- Guaranteed to navigate hallway without crashing

Results

Distance-based Navigation

Object-aware Navigation

Yolov9 Segmentation Model

Source: https://img.freepik.com/premium-vector/vector-realistic-washing-machine-white-3d-mockup_208581-782.jpg?semt=ais_hybrid

Non-NVIDIA Microprocessors

Examples

	STM32N6	ESP32s3	
CPU	Arm [®] Cortex M55 (1)	Xtensa [®] LX7 (4)	
Memory	4.2 MB	2 MB	
Cores	300 MAU ¹	-	
Cost	\$8-\$20	\$2 - \$10	
Speed	0.6 TOPS	-	
Clock Speed	1 GHz	240 MHz	

Performance: STM32N6

Inference per second

Performance: ESP32s3

- Custom CNN 500 KB
- Inference in ~60 milliseconds
- 93% Accuracy

Single Instruction Multiple Data

Acknowledgements

- David Yackzan (now at PikNik Robotics)
- Pouya Samanipour (Ph.D. Student)
- Varun Hariprasad (now at MIT)
- Katherine Zhang (PLD High)
- Karthika Hariprasad (PLD High)

Thank You!

Туре	Duration (minutes)
Total	480
Seated	360
Standing	5
Not visible	115

